This paper proposes a correlation filter tracking algorithm based on adaptive spatial regularization and aberrance repression aiming at the problem that the spatial regularization weight of the background-aware correlation filter is fixed and does not adapt to the change of the target, and the problem that enlarging search area may introduce background noise, decreasing the discrimination ability of filters. First, FHOG features, CN features, and gray features are extracted to enhance the algorithm's ability to express the target. Second, aberrance repression terms are added to the target function to constrain the response map of the current frame, and to enhance the filter's discrimination ability to alleviate the filter model degradation. Finally, adaptive spatial regularization terms are added to the objective function to make the spatial regularization weights being updated as the objective changes, so that the filter can make full use of the target's diversity information. This paper involves experiments on the public data sets OTB-2013, OTB-2015 and VOT2016 to evaluate the proposed algorithm. The experimental results show that the speed of the algorithm used in this paper is 20 frames/s, evaluation indicators such as distance accuracy and success rate are superior to comparison algorithms, and it has good robustness in a variety of complex scenarios such as occlusion, background interference, and rotation changes.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking
Author Affiliations

First published at:Jan 15, 2021
Abstract
References
[1] Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Comput Surv, 2006, 38(4): 1–45.
[2] Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: an experimental survey[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 36(7): 1442–1468.
[3] Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognit Artif Intell, 2018, 31(1): 61–76.
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61–76.
[4] Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544–2550.
[5] Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer Vision–ECCV 2012. ECCV 2012. Berlin, Heidelberg: Springer, 2012: 702–715.
[6] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583–596.
[7] Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1401–1409.
[8] Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Agapito L, Bronstein M, Rother C. Computer Vision-ECCV 2014 Workshops. ECCV 2014. Zurich, Switzerland: Springer, 2014: 254–265.
[9] Danelljan M, Häger G, Khan F S, et al. Discriminative scale space tracking[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(8): 1561–1575.
[10] Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 1135–1143.
[11] Huang Z Y, Fu C H, Li Y M, et al. Learning aberrance repressed correlation filters for real-time UAV tracking[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision (ICCV), 2019: 2891–2900.
[12] Dai K A, Wang D, Lu H C, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 4670–4679.
[13] Tang X M, Chen Z G, Fu Y. Anti-occlusion and re-tracking of real-time moving target based on kernelized correlation filter[J]. Opto-Electron Eng, 2020, 47(1): 52–61.
汤学猛, 陈志国, 傅毅. 基于核滤波器实时运动目标的抗遮挡再跟踪[J]. 光电工程, 2020, 47(1): 52–61.
[14] Wang H Y, Wang L, Yin W R, et al. Multi-scale correlation filtering visual tracking algorithm combined with target detection[J]. Acta Opt Sin, 2019, 39(1): 0115004.
王红雨, 汪梁, 尹午荣, 等. 结合目标检测的多尺度相关滤波视觉跟踪算法[J]. 光学学报, 2019, 39(1): 0115004.
[15] Liu W J, Sun H, Jiang W T. Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Opt Sin, 2019, 39(6): 0615004.
刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39(6): 0615004.
[16] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1834–1848.
[17] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411–2418.
[18] Kristan M, Matas J, Leonardis A, et al. The visual object tracking VOT2015 challenge results[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015: 1–23.
[19] Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6638–6646.
[20] Li Y, Zhu J K, Hoi S C H, et al. Robust estimation of similarity transformation for visual object tracking[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence (AAAI), 2019, 33: 8666–8673.
[21] Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015: 4310–4318.
[22] Wang M M, Liu Y, Huang Z. Large margin object tracking with circulant feature maps[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4800–4808.
[23] Danelljan M, Häger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the British Machine Vision Conference 2014, 2014: 1–11.
[24] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. (2016-08-25)[2020-04-08]. https://arxiv.org/abs/1608.07242.
Funds:
National Natural Science Foundation of China (61871278), International Science and Technology Cooperation and Exchange Project of Sichuan Science and Technology Department (2018HH0143), and Chengdu Industrial Cluster Collaborative Innovation Project (2016-XT00-00015-GX)
Export Citations as:
For
Get Citation:
Wang Ye, Liu Qiang, Qin Linbo, et al. Learning adaptive spatial regularization and aberrance repression correlation filters for visual tracking[J]. Opto-Electronic Engineering, 2021, 48(1): 200068.