Yan R, Hu C J, Li W. A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression[J]. Opto-Electron Eng, 2021, 48(1): 200077. doi: 10.12086/oee.2021.200077
Citation: Yan R, Hu C J, Li W. A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression[J]. Opto-Electron Eng, 2021, 48(1): 200077. doi: 10.12086/oee.2021.200077

A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression

    Fund Project: National Key Research and Development Program of China (2018YFB2200900)
More Information
  • We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.
  • 加载中
  • [1] Xue D J, Yu S H, Yang Q, et al. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front Optoelectron, 2016, 9(2): 123–137. doi: 10.1007/s12200-016-0612-5

    CrossRef Google Scholar

    [2] Cartledge J C. Performance of coherent optical fiber transmission systems[J]. Front Optoelectron, 2018, 11(2): 128–133. doi: 10.1007/s12200-018-0811-3

    CrossRef Google Scholar

    [3] Zhang P, Feng Q G, Li W, et al. Simultaneous OTDR dynamic range and spatial resolution enhancement by digital LFM pulse and short-time FrFT[J]. Appl Sci, 2019, 9(4): 668. doi: 10.3390/app9040668

    CrossRef Google Scholar

    [4] Savory S J. Digital coherent optical receivers: algorithms and subsystems[J]. IEEE J Sel Top Quantum Electron, 2010, 16(5): 1164–1179. doi: 10.1109/JSTQE.2010.2044751

    CrossRef Google Scholar

    [5] Downie J D, Hurley J, Pikula D, et al. Ultra-long-haul 112 Gb/s PM-QPSK transmission systems using longer spans and Raman amplification[J]. Opt Express, 2012, 20(9): 10353–10358. doi: 10.1364/OE.20.010353

    CrossRef Google Scholar

    [6] Khan F N, Zhong K P, Zhou X, et al. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks[J]. Opt Express, 2017, 25(15): 17767–17776. doi: 10.1364/OE.25.017767

    CrossRef Google Scholar

    [7] 张磊, 张晓光, 席丽霞, 等. PM-QPSK相干光通信系统中基于高阶统计矩的光信噪比监测方法的修正[J]. 中国激光, 2014, 41(5): 0505004.

    Google Scholar

    Zhang L, Zhang X G, Xi L X, et al. Modified optical-signal-noise-ratio monitoring method based on high order statistical moment in PM-QPSK coherent optical system[J]. Chin J Lasers, 2014, 41(5): 0505004.

    Google Scholar

    [8] Schmogrow R, Nebendahl B, Winter M, et al. Error vector magnitude as a performance measure for advanced modulation formats[J]. IEEE Photonics Technol Lett, 2012, 24(1): 61–63. doi: 10.1109/LPT.2011.2172405

    CrossRef Google Scholar

    [9] Lundberg L, Sunnerud H, Johannisson P. In-band OSNR monitoring of PM-QPSK using the Stokes parameters[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2015.

    Google Scholar

    [10] Dong Z H, Lau A P T, Lu C. OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers[J]. Opt Express, 2012, 20(17): 19520–19534. doi: 10.1364/OE.20.019520

    CrossRef Google Scholar

    [11] Hu C J, Li W, Feng Q G, et al. A novel in-band OSNR monitoring technique based on fractional Fourier transform of LFM signal[J]. Opt Commun, 2019, 445: 36–40. doi: 10.1016/j.optcom.2019.03.052

    CrossRef Google Scholar

    [12] Lee J H, Choi H Y, Shin S K, et al. A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks[J]. J Lightwave Technol, 2006, 24(11): 4162–4171. doi: 10.1109/JLT.2006.883120

    CrossRef Google Scholar

    [13] Tao Z N, Chen Z Y, Fu L B, et al. Monitoring of OSNR by using a Mach–Zehnder interferometer[J]. Microw Opt Technol Lett, 2001, 30(1): 63–65. doi: 10.1002/mop.1221

    CrossRef Google Scholar

    [14] 沈世奎, 杨爱英, 孙雨南. 窄带离心滤波准确测量带内光信噪比的修正方法[J]. 光学学报, 2009, 29(S2): 74–78.

    Google Scholar

    Shen S K, Yang A Y, Sun Y N. Improved off-center narrow filter method to monitor in-band optical signal-to-noise ratio[J]. Acta Opt Sin, 2009, 29(S2): 74–78.

    Google Scholar

    [15] Hu C J, Li W, Zheng H, et al. A novel cost-effective and distributed in-band OSNR monitoring method using Gaussian process regression[J]. IEEE Photonics J, 2019, 11(4): 7204312.

    Google Scholar

    [16] Oda S, Yang J Y, Akasaka Y, et al. In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals[C]//Proceedings of the 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013.

    Google Scholar

    [17] Dong Z H, Zhong K P, Zhou X, et al. Modulation-format-independent OSNR monitoring insensitive to cascaded filtering effects by low-cost coherent receptions and RF power measurements[J]. Opt Express, 2015, 23(12): 15971–15982. doi: 10.1364/OE.23.015971

    CrossRef Google Scholar

    [18] Yin G, Cui S, Ke C J, et al. Reference optical spectrum based in-band OSNR monitoring method for EDFA amplified multispan optical fiber transmission system with cascaded filtering effect[J]. IEEE Photonics J, 2018, 10(3): 7201910.

    Google Scholar

    [19] 赖俊森, 杨爱英, 孙雨南. 基于异步延迟采样的光通信性能监测方法[J]. 光学学报, 2012, 32(11): 1106004.

    Google Scholar

    Lai J S, Yang A Y, Sun Y N. Optical fiber communication performance monitoring based on asynchronous delay tap sampling[J]. Acta Opt Sin, 2012, 32(11): 1106004.

    Google Scholar

    [20] Meng F, Yan S, Nikolovgenis K, et al. Field trial of Gaussian process learning of function-agnostic channel performance under uncertainty[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018.

    Google Scholar

  • Overview: The optical performance monitoring (OPM) refers to monitoring various performance parameters of optical signals at intermediate nodes or receiver terminal nodes of the optical fiber communication system in order to reduce network operating costs, ensure full utilization of resources, and guarantee reliable operation and flexible management of the system. The amplified spontaneous emission (ASE) noise introduced by optical amplifiers is the main noise source in the optical fiber communication system. Thus, the optical signal-to-noise ratio (OSNR) parameter used to measure the ASE noise accumulation can accurately reflect the quality of the optical signal, which is one of the most important parameters in OPM. Therefore, accurate monitoring of OSNR is an essential part of optical fiber communication systems. However, with the improvement of the channel capacity and transmission rate of the optical fiber communication system and the evolution of the optical network to the dynamiclly reconfigurable direction, the traditional out-of-band OSNR monitoring technique based on linear interpolation is facing the problem of failure. Thereupon, the in-band OSNR monitoring technique has received more and more attention. We propose a novel GPR-based in-band OSNR monitoring technique suitable for intermediate nodes. Firstly, the technology changes the center wavelength of the broadband tunable optical bandpass filter (OBPF) in a constant step size, so as to realize the sweep filtering of the whole C-band. Then, the optical power sequence collected from the center wavelength of the broadband tunable OBPF in the midpoint range of the channel to be monitored, and the adjacent channel is taken as the input features of the GPR model. Finally, the in-band OSNR monitoring is realized by utilizing the trained GPR model. By constructing a 9×32 Gbaud PDM-16QAM coherent optical communication system, a comprehensive experiment was conducted to verify the effectiveness and feasibility of our proposed technique. The experimental results show that in a 9×32 Gbaud PDM-16QAM system with 50 GHz channel spacing, the root means squared error and the mean absolute error are below 0.43 dB and 0.3 dB in the OSNR range of -1 dB to 30 dB, respectively. Even better, our proposed technique has the following advantages: higher monitoring accuracy; wider monitoring range; strong robustness to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascade filtering effect; no prior knowledge of link configuration required; low cost; distributed monitoring. Therefore, our proposed technique can realize OSNR monitoring at any node which is suitable for dynamically reconfigurable high-speed dense wavelength division multiplexing (DWDM) optical fiber communication systems and has huge development prospects and wide practical application potential.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(5122) PDF downloads(1313) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint