Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218
Citation: Wang J J, Zhu Q H, Dong J F. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electron Eng, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

Research progress of electromagnetic properties of tunable chiral metasurfaces

    Fund Project: National Natural Science Foundation of China (61475079)
More Information
  • Chiral metasurfaces are ultra-thin metamaterials composed of planar chiral cell structures with specific electromagnetic responses. They have attracted great attention due to their singular ability to control electromagnetic waves at will. With tunable materials incorporated into the metasurfaces design, one can realize tunable/reconfigurable metadevices with functionalities controlled by external stimuli, opening a new platform to dynamically manipulate electromagnetic waves. In this paper, we introduce some theoretical foundations of the electromagnetic properties of tunable/reconfigurable chiral metasurfaces. When a linearly polarized light enters a tunable chiral metasurface, it can be decomposed into left-handed circularly polarized (LCP) wave and right-handed circularly polarized (RCP) wave. By changing the dielectric constant and magnetic permeability of the medium through the external environment, the metadevices can dynamically control the response characteristics to various polarized lights, especially circularly polarized lights such as refractive index, dichroism, optical rotation, asymmetric transmission, etc. According to the properties of negative refractive index, circular dichroism, optical rotation, and asymmetric transmission controlled by the tunable chiral metasurfaces, we review the latest research progress. Finally, we put forward our own opinions on the possible future development directions and existing challenges of the rapidly developing field of the tunable chiral metasurface.
  • 加载中
  • [1] Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 2018, 7(6): 959-987. doi: 10.1515/nanoph-2017-0130

    CrossRef Google Scholar

    [2] Chang S Y, Guo X X, Ni X J. Optical metasurfaces: progress and applications[J]. Annu Rev Mater Res, 2018, 48(1): 279-302. doi: 10.1146/annurev-matsci-070616-124220

    CrossRef Google Scholar

    [3] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380-479. doi: 10.1364/AOP.11.000380

    CrossRef Google Scholar

    [4] Rizza C, Falco A D, Scalora M, et al. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials[J]. Phys Rev Lett, 2015, 115(5): 057401. doi: 10.1103/PhysRevLett.115.057401

    CrossRef Google Scholar

    [5] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Phys Rev Lett, 2006, 97(16): 167401. doi: 10.1103/PhysRevLett.97.167401

    CrossRef Google Scholar

    [6] Dong J F, Zhou J F, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express, 2009, 17(16): 14172-14179. doi: 10.1364/OE.17.014172

    CrossRef Google Scholar

    [7] Lin H T, Chang C Y, Cheng P J, et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15996-16004. doi: 10.1021/acsami.8b01472

    CrossRef Google Scholar

    [8] Lv T T, Li Y X, Ma H F, et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Sci Rep, 2016, 6: 23186. doi: 10.1038/srep23186

    CrossRef Google Scholar

    [9] Mandal P, Mohan S, Sharma S, et al. Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application[J]. Photonics Nanostruct-Fundam Appl, 2019, 37: 100735. doi: 10.1016/j.photonics.2019.100735

    CrossRef Google Scholar

    [10] Sorathiya V, Dave V. Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency[J]. Opt Commun, 2020, 456: 124581. doi: 10.1016/j.optcom.2019.124581

    CrossRef Google Scholar

    [11] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [12] Mao L B, Liu K, Zhang S, et al. Extrinsically 2D-chiral metamirror in near-infrared region[J]. ACS Photonics, 2020, 7(2): 375-383. doi: 10.1021/acsphotonics.9b01211

    CrossRef Google Scholar

    [13] Wu R Y, Cui T J. Microwave metamaterials: from exotic physics to novel information systems[J]. Front Inform Technol Electron Eng, 2020, 21(1): 4-26. doi: 10.1631/FITEE.1900465

    CrossRef Google Scholar

    [14] Plum E, Liu X X, Fedotov V A, et al. Metamaterials: optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11): 113902. doi: 10.1103/PhysRevLett.102.113902

    CrossRef Google Scholar

    [15] Zhang S, Fan W J, Panoiu N C, et al. Demonstration of near-infrared negative-index materials[J]. Phys Rev Lett, 2005, 95(13): 137404. doi: 10.1103/PhysRevLett.95.137404

    CrossRef Google Scholar

    [16] Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials[J]. J Opt Soc Am B, 2013, 30(2): 439-444. doi: 10.1364/JOSAB.30.000439

    CrossRef Google Scholar

    [17] Li W L, Meng Q L, Huang R S, et al. Thermally tunable broadband terahertz metamaterials with negative refractive index[J]. Opt Commun, 2018, 412: 85-89. doi: 10.1016/j.optcom.2017.11.076

    CrossRef Google Scholar

    [18] Ling F, Zhong Z Q, Huang R S, et al. A broadband tunable terahertz negative refractive index metamaterial[J]. Sci Rep, 2018, 8: 9843. doi: 10.1038/s41598-018-28221-3

    CrossRef Google Scholar

    [19] Ling F, Zhong Z Q, Zhang Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Opt Express, 2018, 26(23): 30085-30099. doi: 10.1364/OE.26.030085

    CrossRef Google Scholar

    [20] Luo Y B, Zeng Q S, Yan X, et al. A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna[J]. Microw Opt Technol Lett, 2019, 61(12): 2766-2772. doi: 10.1002/mop.31970

    CrossRef Google Scholar

    [21] Iwai A, Righetti F, Wang B, et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial[J]. Phys Plasmas, 2020, 27(2): 023511. doi: 10.1063/1.5112077

    CrossRef Google Scholar

    [22] Huang Y J, Xie X, Pu M B, et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Adv Opt Mater, 2020, 8(11): 1902061. doi: 10.1002/adom.201902061

    CrossRef Google Scholar

    [23] Cao T, Zhang L, Simpson R E, et al. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials[J]. Opt Express, 2013, 21(23): 27841-27851. doi: 10.1364/OE.21.027841

    CrossRef Google Scholar

    [24] Cao T, Li Y, Wei C W, et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials[J]. Opt Express, 2017, 25(9): 9911-9925. doi: 10.1364/OE.25.009911

    CrossRef Google Scholar

    [25] Yin X H, Schäferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255-4260. doi: 10.1021/nl5042325

    CrossRef Google Scholar

    [26] Gao F, Zhu J W, Ma H F, et al. Tunable circular dichroism of chiral metamaterial based on phase transition of vanadium dioxide (VO2)[J]. Mater Res Express, 2020, 7(4): 045802. doi: 10.1088/2053-1591/ab89de

    CrossRef Google Scholar

    [27] Wang T K, Wang Y K, Luo L N, et al. Tunable circular dichroism of achiral graphene plasmonic structures[J]. Plasmonics, 2017, 12(3): 829-833. doi: 10.1007/s11468-016-0331-1

    CrossRef Google Scholar

    [28] Kim T T, Oh S S, Kim H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Sci Adv, 2017, 3(9): e1701377. doi: 10.1126/sciadv.1701377

    CrossRef Google Scholar

    [29] Huang Z, Yao K, Su G X, et al. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation[J]. Opt Lett, 2018, 43(11): 2636-2639. doi: 10.1364/OL.43.002636

    CrossRef Google Scholar

    [30] Vila M, Hung N T, Roche S, et al. Tunable circular dichroism and valley polarization in the modified Haldane model[J]. Phys Rev B, 2019, 99(16): 161404. doi: 10.1103/PhysRevB.99.161404

    CrossRef Google Scholar

    [31] Zhou S E, Lai P T, Dong G H, et al. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime[J]. Opt Express, 2019, 27(11): 15359-15367. doi: 10.1364/OE.27.015359

    CrossRef Google Scholar

    [32] Yao Z F, Lu M J, Zhang C Y, et al. Dynamically tunable and transmissive linear to circular polarizer based on graphene metasurfaces[J]. J Opt Soc Am B, 2019, 36(12): 3302-3306. doi: 10.1364/JOSAB.36.003302

    CrossRef Google Scholar

    [33] Amin M, Siddiqui O, Farhat M. Linear and circular dichroism in graphene-based reflectors for polarization control[J]. Phys Rev Appl, 2020, 13(2): 024046. doi: 10.1103/PhysRevApplied.13.024046

    CrossRef Google Scholar

    [34] Hong Q L, Xu W, Zhang J F, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Opt Lett, 2019, 44(7): 1774-1777. doi: 10.1364/OL.44.001774

    CrossRef Google Scholar

    [35] Yin S T, Ji W, Xiao D, et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces[J]. Opt Commun, 2019, 448: 10-14. doi: 10.1016/j.optcom.2019.05.006

    CrossRef Google Scholar

    [36] Peng R H, Liu J X, Xiao D, et al. Microfluid-enabled fine tuning of circular dichroism from chiral metasurfaces[J]. J Phys D: Appl Phys, 2019, 52(41): 415102. doi: 10.1088/1361-6463/ab3129

    CrossRef Google Scholar

    [37] Jing L Q, Wang Z J, Zheng B, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J]. NPG Asia Mater, 2018, 10(9): 888-898. doi: 10.1038/s41427-018-0082-x

    CrossRef Google Scholar

    [38] Liu Z G, Xu Y, Ji C Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Adv Mater, 2020, 32(8): 1907077. doi: 10.1002/adma.201907077

    CrossRef Google Scholar

    [39] Zhou L, Wang Y K, Zhou J X, et al. Tunable circular dichroism of stretchable chiral metamaterial[J]. Appl Phys Express, 2020, 13(4): 042008. doi: 10.35848/1882-0786/ab8054

    CrossRef Google Scholar

    [40] Zanotto S, Blancato A, Buchheit A, et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide[J]. Adv Opt Mater, 2017, 5(2): 1600732. doi: 10.1002/adom.201600732

    CrossRef Google Scholar

    [41] Qu Y, Zhang Z D, Fu T, et al. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface[J]. J Phys D: Appl Phys, 2017, 50(50): 504001. doi: 10.1088/1361-6463/aa95f6

    CrossRef Google Scholar

    [42] Hu J P, Zhao X N, Lin Y, et al. All-dielectric metasurface circular dichroism waveplate[J]. Sci Rep, 2017, 7: 41893. doi: 10.1038/srep41893

    CrossRef Google Scholar

    [43] Cao T, Wei C W, Mao L B. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism[J]. Sci Rep, 2015, 5: 14666. doi: 10.1038/srep14666

    CrossRef Google Scholar

    [44] Zhao J Y, Zhang J F, Zhu Z H, et al. Tunable asymmetric transmission of THz wave through a graphene chiral metasurface[J]. J Opt, 2016, 18(9): 095001. doi: 10.1088/2040-8978/18/9/095001

    CrossRef Google Scholar

    [45] Jiang H, Zhao W Y, Jiang Y Y. High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet[J]. Opt Express, 2017, 25(17): 19732-19739. doi: 10.1364/OE.25.019732

    CrossRef Google Scholar

    [46] Shokati E, Asgari S, Granpayeh N. Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor[J]. IEEE Sens J, 2019, 19(21): 9991-9996. doi: 10.1109/JSEN.2019.2925963

    CrossRef Google Scholar

    [47] Zhou J X, Wang Y K, Lu M J, et al. Giant enhancement of tunable asymmetric transmission for circularly polarized waves in a double-layer graphene chiral metasurface[J]. RSC Adv, 2019, 9(58): 33775-33780. doi: 10.1039/C9RA05760A

    CrossRef Google Scholar

    [48] Zhao J X, Song J L, Xu T Y, et al. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface[J]. Opt Express, 2019, 27(7): 9773-9781. doi: 10.1364/OE.27.009773

    CrossRef Google Scholar

    [49] Song Q H, Wu P C, Zhu W M, et al. Split archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Appl Phys Lett, 2019, 114(15): 151105. doi: 10.1063/1.5084329

    CrossRef Google Scholar

    [50] Hajian H, Ghobadi A, Serebryannikov A E, et al. VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption[J]. J Opt Soc Am B, 2019, 36(6): 1607-1615. doi: 10.1364/JOSAB.36.001607

    CrossRef Google Scholar

    [51] Hajian H, Ghobadi A, Serebryannikov A E, et al. Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials[J]. J Appl Phys, 2019, 126(19): 193102. doi: 10.1063/1.5118887

    CrossRef Google Scholar

    [52] Asgari S, Rahmanzadeh M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings[J]. Opt Commun, 2020, 456: 124623. doi: 10.1016/j.optcom.2019.124623

    CrossRef Google Scholar

    [53] Li T, Hu F R, Qian Y X, et al. Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave[J]. Chin Phys B, 2020, 29(2): 024203. doi: 10.1088/1674-1056/ab5ef8

    CrossRef Google Scholar

  • Overview: Chiral metasurfaces composed of planar chiral cell structures have negative refractive index, circular dichroism, optical rotation, asymmetric transmission, and other electromagnetic properties. With simple structure, they are easy to be miniaturized and integrated. In recent years, they have become a research hotspot in the field of optical application devices such as information, national defense, energy, super-resolved imaging, holographic display, sensing, polarizer, and switch.

    The basic materials of chiral metasurfaces are metal materials, metal-dielectric mixed materials, and all dielectric materials. With the rapid development of chiral metasurfaces research, the optical properties of chiral metasurfaces have been extensively studied. However, the current chiral metadevices lack tunability, and once they are designed and manufactured, their electromagnetic properties and functions will also be fixed and cannot be used in the field of dynamically changing optoelectronics. Therefore, it is necessary to add new tunable materials such as phase-change materials (VO2, Ge2Sb1Te4), graphene, single-layer black scale, liquid crystal, semiconductors, polymers, etc. Through heat, light, electricity and other external factors to induce the change of the dielectric constant and permeability of the medium, so as to achieve the tuning effect of the electromagnetic characteristics. These new tunable materials greatly enrich the modeling of chiral metasurfaces, providing more effective methods for theoretical analysis of unique electromagnetic and optical properties, and also providing a new research platform for electromagnetism, optics, physics, and nanoscience.

    In this review, we describe the research progress of several common tunable chiral metasurfaces in recent years. The first one is the negative refractive index tunable chiral metasurfaces, which experimentally show that the negative refractive index can be adjustable in wide band. The second one is the chiral metasurfaces with tunable circular dichroism and optical rotation. The dynamic regulation of internal and external chiral metasurfaces based on circular dichroism and optical rotation is introduced in detail, which can realize the functional tuning of polarization conversion, circular dichroism switch, quarter wave plate, and reflector. It is divided into phase change materials, graphene, and other tunable materials according to the tunable materials. The optical properties of phase-change materials vary only with the phase transition and have a very fast phase transition speed. Graphene has high electrical conductivity, wide band electro-optical properties, and stable chemical resistance, and the circular dichroism and optical rotation can be changed by adjusting the Fermi energy level of graphene. Finally, a tunable chiral metasurface with asymmetric transmission is introduced. Among them, the discovery of the tunable all-dielectric chiral metasurfaces provides a possibility to solve the problem of low efficiency and high loss of the metal materials, which can be applied to more fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(8377) PDF downloads(1228) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint