Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electron Eng, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183
Citation: Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electron Eng, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183

Research progress of computational microspectrometer based on speckle inspection

    Fund Project: National Key Research and Development Program of China (2019YFB2203402), National Natural Science Foundation of China (11774383, 11774099 and 11874029), Guangdong Science and Technology Program International Cooperation Program (2018A050506039), Guangdong Basic and Applied Basic Research Foundation (2020B1515020037), and Pearl River Talent Plan Program of Guangdong (2019QN01X120)
More Information
  • Fast, accurate and nondestructive spectral analysis technique is important and widely used in the fields of scientific research, information, biomedical, pharmaceutical detection, agriculture, environment, and security. However, the existing spectroscopic analysis equipments are usually bulky and complex, which are difficult to adapt to portable application scenarios such as on-site rapid detection, light-load platform, etc. In recent years, miniature spectroscopic detection technology and equipment have received extensive attention, and have been rapidly developed, with significant advantages in size, weight, and power consumption. In particular, the computational spectral analysis technology based on the speckle detection can obtain high-precision spectral information by recording and analyzing the speckle pattern formed by the scattering element on the measured light. This paper will first introduce the related technical principles and technological developments, then analyze the existing techniques including the advantages and disadvantages, and finally discuss and summarize the future development direction and application prospects.
  • 加载中
  • [1] 史俊锋, 惠梅, 王东生, 等. 光谱仪的微型化及其应用[J]. 光学技术, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016

    CrossRef Google Scholar

    Shi J F, Hui M, Wang D S, et al. Micromation and applications of spectrometers[J]. Opt Tech, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016

    CrossRef Google Scholar

    [2] Yang T, Peng J X, Ho H P, et al. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card[J]. Proc SPIE, 2018, 10616: 1061610. doi: 10.1117/12.2292789

    CrossRef Google Scholar

    [3] Pang Y J, Zhang Y X, Yang H D, et al. Compact broadband high-resolution infrared spectrometer with a dihedral reflector[J]. Opt Express, 2017, 25(13): 14960-14967. doi: 10.1364/OE.25.014960

    CrossRef Google Scholar

    [4] Yang T, Zhang Y, Ge J C, et al. Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces[J]. Opt Lett, 2019, 44(24): 6061-6064. doi: 10.1364/OL.44.006061

    CrossRef Google Scholar

    [5] Avrutsky I, Salakhutdinov I, Chaganti K. Diffractive imaging micro-spectrometer[J]. Proc SPIE, 2006, 6388: 63880Q. doi: 10.1117/12.694275

    CrossRef Google Scholar

    [6] Podmore H, Scott A, Lee R, et al. A compressive-sensing fourier-transform on-chip Raman spectrometer[J]. Photonic Instrum Eng V, 2018, 10539: 105390L.

    Google Scholar

    [7] Ballard Z S, Shir D, Bhardwaj A, et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning[J]. ACS Nano, 2017, 11(2): 2266-2274. doi: 10.1021/acsnano.7b00105

    CrossRef Google Scholar

    [8] Reinig P, Grüger H, Knobbe J, et al. Bringing NIR spectrometers into mobile phones[J]. Proc SPIE, 2018, 10545: 105450F.

    Google Scholar

    [9] McGonigle A J S, Wilkes T C, Pering T D, et al. Smartphone spectrometers[J]. Sensors (Basel), 2018, 18(1): 223. doi: 10.1117/12.2289931

    CrossRef Google Scholar

    [10] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70. doi: 10.1038/nature14576

    CrossRef Google Scholar

    [11] Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5

    CrossRef Google Scholar

    [12] Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481-4484. doi: 10.1364/OL.43.004481

    CrossRef Google Scholar

    [13] Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer[J]. ACS Photonics, 2019, 6(1): 79-86. doi: 10.1021/acsphotonics.8b01503

    CrossRef Google Scholar

    [14] Yang T, Huang X L, Ho H P, et al. Compact spectrometer based on a frosted glass[J]. IEEE Photonics Techno Lett, 2017, 29(2): 217-220. doi: 10.1109/LPT.2016.2636340

    CrossRef Google Scholar

    [15] Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 1017-1020. doi: 10.1126/science.aax8814

    CrossRef Google Scholar

    [16] Pichette J, Charle W, Lambrechts A. Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan[J]. Proc SPIE, 2017, 10110: 1011014.

    Google Scholar

    [17] Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology[J]. Proc SPIE, 2019, 10931: 1093108. doi: 10.1117/12.2510472

    CrossRef Google Scholar

    [18] Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electron Adv, 2020, 3(3): 190040. doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [19] Cao H. Perspective on speckle spectrometers[J]. J Opt, 2017, 19(6): 060402. doi: 10.1088/2040-8986/aa7251

    CrossRef Google Scholar

    [20] 刘建学, 尹晓慧, 韩四海, 等. 便携式近红外光谱仪研究进展[J]. 河南农业大学学报, 2019, 53(4): 662-670.

    Google Scholar

    Liu J X, Yin X H, Han S H, et al. Review of portable near-infrared spectrometers[J]. J Henan Agri Univ, 2019, 53(4): 662-670.

    Google Scholar

    [21] 王伟平, 金里. 芯片级硅基光谱仪研究进展[J]. 光谱学与光谱分析, 2020, 40(2): 333-342.

    Google Scholar

    Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform[J]. Spectrosc Spectral Anal, 2020, 40(2): 333-342.

    Google Scholar

    [22] Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Opt Express, 2013, 21(5): 6584-6600. doi: 10.1364/OE.21.006584

    CrossRef Google Scholar

    [23] Sefler G A, Shaw T J, Valley G C. Demonstration of speckle-based compressive sensing system for recovering RF signals[J]. Opt Express, 2018, 26(17): 21390-21402. doi: 10.1364/OE.26.021390

    CrossRef Google Scholar

    [24] Halpaap D, Tiana-Alsina J, Vilaseca M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Opt Express, 2019, 27(20): 27737-27744. doi: 10.1364/OE.27.027737

    CrossRef Google Scholar

    [25] Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Lett, 2020, 20(1): 320-328. doi: 10.1021/acs.nanolett.9b03862

    CrossRef Google Scholar

    [26] Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556-1563. doi: 10.1109/JSEN.2010.2103054

    CrossRef Google Scholar

    [27] Redding B, Popoff S M, Bromberg Y, et al. Noise analysis of spectrometers based on speckle pattern reconstruction[J]. Appl Opt, 2014, 53(3): 410-417. doi: 10.1364/AO.53.000410

    CrossRef Google Scholar

    [28] Yee G M, Maluf N I, Hing P A, et al. Miniature spectrometers for biochemical analysis[J]. Sens Actuators A Phys, 1997, 58(1): 61-66. doi: 10.1016/S0924-4247(97)80225-7

    CrossRef Google Scholar

    [29] Ma X, Li M Y, He J J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics J, 2013, 5(2): 6600807. doi: 10.1109/JPHOT.2013.2250944

    CrossRef Google Scholar

    [30] Chang C C, Lin N T, Kurokawa U, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection[J]. Opt Eng, 2011, 50(11): 114402. doi: 10.1117/1.3645086

    CrossRef Google Scholar

    [31] Kraft M, Kenda A, Frank A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Anal Bioanal Chem, 2006, 386(5): 1259-1266. doi: 10.1007/s00216-006-0726-5

    CrossRef Google Scholar

    [32] Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Sci Rep, 2017, 7(1): 40693. doi: 10.1038/srep40693

    CrossRef Google Scholar

    [33] Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Opt Express, 2014, 22(18): 21541-21550. doi: 10.1364/OE.22.021541

    CrossRef Google Scholar

    [34] Valley G C, Sefler G A, Shaw T J. Multimode waveguide speckle patterns for compressive sensing[J]. Opt Lett, 2016, 41(11): 2529-2532. doi: 10.1364/OL.41.002529

    CrossRef Google Scholar

    [35] Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056-1061. doi: 10.1364/OE.16.001056

    CrossRef Google Scholar

    [36] 唐川雁, 史姣姣. 基于变换域的压缩感知快速重构算法[J]. 软件导刊, 2019, 18(7): 96-99.

    Google Scholar

    Tang C Y, Shi J J. Fast reconstruction algorithm based on transformation domain for compressed sensing[J]. Softw Guide, 2019, 18(7): 96-99.

    Google Scholar

    [37] Brady D J, Gehm M E, Pitsianis N, et al. Compressive sampling strategies for integrated microspectrometers[J]. Intell Integr Microsystems, 2006, 6232: 62320C. doi: 10.1117/12.666124

    CrossRef Google Scholar

    [38] LU C C, Chen K, Huang L R, et al. Signal recovery for compressive spectrometers[J]. Sens Agric Food Qual Saf X, 2018, 10665: 106650U.

    Google Scholar

    [39] Chong X Y, Li E W, Squire K, et al. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array[J]. Appl Phys Lett, 2016, 108(22): 221106. doi: 10.1063/1.4953261

    CrossRef Google Scholar

    [40] Kim C, Park D, Lee H N. Convolutional neural networks for the reconstruction of spectra in compressive sensing spectrometers[J]. Opt Data Sci Ⅱ, 2019, 10937: 109370L. doi: 10.1117/12.2509548

    CrossRef Google Scholar

    [41] Zhang S, Dong Y H, Fu H Y, et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors (Basel), 2018, 18(2): 644. doi: 10.3390/s18020644

    CrossRef Google Scholar

    [42] Hong L Y, Sengupta K. Fully integrated optical spectrometer in visible and Near-IR in CMOS[J]. IEEE Trans Biomed Circuits Syst, 2017, 11(6): 1176-1191. doi: 10.1109/TBCAS.2017.2774603

    CrossRef Google Scholar

    [43] Oliver J, Lee W B, Lee H N. Filters with random transmittance for improving resolution in filter-array-based spectrometers[J]. Opt Express, 2013, 21(4): 3969-3989. doi: 10.1364/OE.21.003969

    CrossRef Google Scholar

    [44] Feller S D, Chen H J, Brady D J, et al. Multiple order coded aperture spectrometer[J]. Opt Express, 2007, 15(9): 5625-5630. doi: 10.1364/OE.15.005625

    CrossRef Google Scholar

    [45] Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Opt Lett, 2012, 37(16): 3384-3386. doi: 10.1364/OL.37.003384

    CrossRef Google Scholar

    [46] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9): 956-962. doi: 10.1364/OPTICA.3.000956

    CrossRef Google Scholar

    [47] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746-751. doi: 10.1038/nphoton.2013.190

    CrossRef Google Scholar

    [48] Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Opt Lett, 2016, 41(9): 2029-2032. doi: 10.1364/OL.41.002029

    CrossRef Google Scholar

    [49] Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217-3220. doi: 10.1364/OL.40.003217

    CrossRef Google Scholar

    [50] Freude W, Fritzsche C, Grau G, et al. Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides[J]. J Lightwave Technol, 1986, 4(1): 64-72. doi: 10.1109/JLT.1986.1074634

    CrossRef Google Scholar

    [51] Hlubina P. Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern[J]. J Mod Opt, 1994, 41(5): 1001-1014. doi: 10.1080/09500349414550941

    CrossRef Google Scholar

    [52] Yamaguchi I. A laser-speckle strain gauge[J]. J Phys E: Sci Instrum, 1981, 14(11): 1270. doi: 10.1088/0022-3735/14/11/012

    CrossRef Google Scholar

    [53] Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Opt Acta: Int J Opt, 1981, 28(10): 1359-1376. doi: 10.1080/713820454

    CrossRef Google Scholar

    [54] Yamaguchi I, Kobayashi K, Yaroskavsky L P. Measurement of surface roughness by speckle correlation[J]. Opt Eng, 2004, 43(11): 2753-2762. doi: 10.1117/1.1797851

    CrossRef Google Scholar

    [55] Imai M. Statistical properties of optical fiber speckles[J]. 北海道大學, 1986, 130: 89-104.

    Google Scholar

    [56] Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3): 175-180. doi: 10.1364/OPTICA.1.000175

    CrossRef Google Scholar

    [57] 徐丹阳, 杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现[J]. 光电工程, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152

    CrossRef Google Scholar

    Xu D Y, Du C N. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electron Eng, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152

    CrossRef Google Scholar

    [58] Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer[J]. Nat Commun, 2016, 7(1): 12995. doi: 10.1038/ncomms12995

    CrossRef Google Scholar

    [59] Meng Z Y, Li J Q, Yin C J, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP Adv, 2019, 9(1): 015004. doi: 10.1063/1.5052276

    CrossRef Google Scholar

    [60] Wan N H, Meng F, Schröder T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nat Commun, 2015, 6: 7762. doi: 10.1038/ncomms8762

    CrossRef Google Scholar

    [61] Kohlgraf-Owens T W, Dogariu A. Transmission matrices of random media: means for spectral polarimetric measurements[J]. Opt Lett, 2010, 35(13): 2236-2238. doi: 10.1364/OL.35.002236

    CrossRef Google Scholar

    [62] Hang Q, Ung B, Syed I, et al. Photonic bandgap fiber bundle spectrometer[J]. Appl Opt, 2010, 49(25): 4791-4800. doi: 10.1364/AO.49.004791

    CrossRef Google Scholar

    [63] Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Sci Rep, 2017, 7: 43454. doi: 10.1038/srep43454

    CrossRef Google Scholar

    [64] Pervez N K, Cheng W, Jia Z, et al. Photonic crystal spectrometer[J]. Opt Express, 2010, 18(8): 8277-8285. doi: 10.1364/OE.18.008277

    CrossRef Google Scholar

    [65] Momeni B, Hosseini E S, Askari M, et al. Integrated photonic crystal spectrometers for sensing applications[J]. Opt Commun, 2009, 282(15): 3168-3171. doi: 10.1016/j.optcom.2009.04.052

    CrossRef Google Scholar

    [66] Momeni B, Yegnanarayanan S, Soltani M, et al. Silicon nanophotonic devices for integrated sensing[J]. Journal of Nanophotonics, 2009, 3(1): 031001. doi: 10.1117/1.3122986

    CrossRef Google Scholar

    [67] Soltani M, Li Q, Yegnanarayanan S, et al. Large-scale array of small high-Q microdisk resonators for onchip spectral analysis[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009: 703-704.

    Google Scholar

    [68] Xia Z X, Eftekhar A A, Soltani M, et al. Near infrared absorption sensor based on large-scale array of miniaturized microdonut resonators[C]. Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, 2010: IME6.

    Google Scholar

    [69] Xia Z X, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Opt Exp, 2011, 19(13): 12356-12364. doi: 10.1364/OE.19.012356

    CrossRef Google Scholar

    [70] Babin S, Bugrov A, Cabrini S, et al. Digital optical spectrometer-on-chip[J]. Appl Phys Lett, 2009, 95(4): 041105. doi: 10.1063/1.3190199

    CrossRef Google Scholar

    [71] Calafiore G, Koshelev A, Dhuey S, et al. Holographic planar lightwave circuit for on-chip spectroscopy[J]. Light: Sci Appl, 2014, 3(9): e203. doi: 10.1038/lsa.2014.84

    CrossRef Google Scholar

    [72] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5

    CrossRef Google Scholar

    [73] 王国栋, 夏果, 李志远, 等. 便携式紫外-可见光谱仪设计及关键技术研究[J]. 光电工程, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195

    CrossRef Google Scholar

    Wang G D, Xia G, Li Z Y, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electron Eng, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195

    CrossRef Google Scholar

    [74] Xu Z C, Wang Z L, Sullivan M, et al. Multimodal multiplex spectroscopy using photonic crystals[J]. Opt Express, 2003, 11(18): 2126-2133. doi: 10.1364/OE.11.002126

    CrossRef Google Scholar

    [75] Mazilu M, Vettenburg T, Di Falco A, et al. Random super-prism wavelength meter[J]. Opt Lett, 2014, 39(1): 96-99. doi: 10.1364/OL.39.000096

    CrossRef Google Scholar

    [76] Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer[J]. Opt Lett, 2015, 40(14): 3264-3267. doi: 10.1364/OL.40.003264

    CrossRef Google Scholar

    [77] Yang T, Peng J X, Li X A, et al. Compact broadband spectrometer based on upconversion and downconversion luminescence[J]. Opt Lett, 2017, 42(21): 4375-4378. doi: 10.1364/OL.42.004375

    CrossRef Google Scholar

    [78] Wang P, Menon R. Computational spectrometer based on a broadband diffractive optic[J]. Opt Express, 2014, 22(12): 14575-14587. doi: 10.1364/OE.22.014575

    CrossRef Google Scholar

    [79] Wu L, Cai Z J, Su Y F, et al. Simulative study on speckle-spectral properties of a random pixelated grating[J]. J Opt Soc Am A, 2019, 36(8): 1410-1417. doi: 10.1364/JOSAA.36.001410

    CrossRef Google Scholar

    [80] Çetindağ Ş K, Toy M F, Ferhanoğlu O, et al. A speckle-enhanced prism spectrometer with high dynamic range[J]. IEEE Photonics Technol Lett, 2018, 30(24): 2139-2142. doi: 10.1109/LPT.2018.2879247

    CrossRef Google Scholar

    [81] 王贤俊, 龙亚雪, 郑海燕, 等. 超高分辨力微型光谱仪的光学系统设计[J]. 光电工程, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228

    CrossRef Google Scholar

    Wang X J, Long Y X, Zheng H Y, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electron Eng, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228

    CrossRef Google Scholar

  • Overview: Fast, accurate and nondestructive spectral analysis technique is important to differentiate matters and widely used in the fields of scientific research, information, biomedical, pharmaceutical detection, agriculture, environment, and security. The existing spectroscopic analysis equipments usually use individual optical elements such as gratings, prisms and interferometer to obtain spectral information, and therefore the whole system is usually bulky, complex and expensive, which are difficult to adapt to portable application scenarios such as on-site rapid detection, point-of-care diagnostics, and light-load platform in low-resource settings. It is not straight forward to minimize the conventional spectrometer without a loss of performance because the spectral resolution is usually associated with the length of light path. Novel mechanisms and advanced techniques are required to tackle this issue. With the rapid developments of the novel nanophotonic techniques and micro-nano fabrication methods, spectral analysis has been achieved on a single chip with decent spectral resolution, for example, quantum dot microspectrometer, photonic crystal microspectrometer, and so on, which shows great advantages in volume, weight, integration, cost, etc. In addition, combining such minimized spectrometers together with the cloud technology and big data technology is expected to significantly improve the efficiency of spectral information in collection, distribution and analysis, which is important for timely, accurate and portable applications. In particular, the computational spectral technology based on the speckle inspection can obtain high-resolution spectral information by recording and analyzing the speckle patterns formed by the light scattering process. In general, the speckle detection-based spectral analysis techniques are divided into two categories: the waveguide types and the normal incidence types. The waveguide types include multimode fibers, multimode waveguides, and in-plane scatters. Different modes have different propagation constants and thus different phase delay. Different scattering paths also result in different phase delay. The light interference therefore induces the generation of the wavelength-dependent speckles. The normal incidence type usually includes disordered micro-nano structures such as nanoparticles, micro-holes, and frosted glass. Similar optical interference phenomenon occurs and generates wavelength-dependent speckles. By initially calibrating the speckle generation structures by a series of monochromatic light and dealing the speckle with the compressive sensing algorithm, the spectral information of the target spectrum can be reconstructed. This paper will introduce the relevant technical principles and technical development status, analyze the existing technical performance, advantages and disadvantages, discuss and summarize the future development direction and application prospects.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint