Citation: |
|
[1] | 史俊锋, 惠梅, 王东生, 等. 光谱仪的微型化及其应用[J]. 光学技术, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016 Shi J F, Hui M, Wang D S, et al. Micromation and applications of spectrometers[J]. Opt Tech, 2003, 29(1): 13-16, 20. doi: 10.3321/j.issn:1002-1582.2003.01.016 |
[2] | Yang T, Peng J X, Ho H P, et al. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card[J]. Proc SPIE, 2018, 10616: 1061610. doi: 10.1117/12.2292789 |
[3] | Pang Y J, Zhang Y X, Yang H D, et al. Compact broadband high-resolution infrared spectrometer with a dihedral reflector[J]. Opt Express, 2017, 25(13): 14960-14967. doi: 10.1364/OE.25.014960 |
[4] | Yang T, Zhang Y, Ge J C, et al. Compact terahertz spectrometer based on sequential modulation of disordered rough surfaces[J]. Opt Lett, 2019, 44(24): 6061-6064. doi: 10.1364/OL.44.006061 |
[5] | Avrutsky I, Salakhutdinov I, Chaganti K. Diffractive imaging micro-spectrometer[J]. Proc SPIE, 2006, 6388: 63880Q. doi: 10.1117/12.694275 |
[6] | Podmore H, Scott A, Lee R, et al. A compressive-sensing fourier-transform on-chip Raman spectrometer[J]. Photonic Instrum Eng V, 2018, 10539: 105390L. |
[7] | Ballard Z S, Shir D, Bhardwaj A, et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning[J]. ACS Nano, 2017, 11(2): 2266-2274. doi: 10.1021/acsnano.7b00105 |
[8] | Reinig P, Grüger H, Knobbe J, et al. Bringing NIR spectrometers into mobile phones[J]. Proc SPIE, 2018, 10545: 105450F. |
[9] | McGonigle A J S, Wilkes T C, Pering T D, et al. Smartphone spectrometers[J]. Sensors (Basel), 2018, 18(1): 223. doi: 10.1117/12.2289931 |
[10] | Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70. doi: 10.1038/nature14576 |
[11] | Faraji-Dana M, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5 |
[12] | Craig B, Shrestha V R, Meng J J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Opt Lett, 2018, 43(18): 4481-4484. doi: 10.1364/OL.43.004481 |
[13] | Cerjan B, Halas N J. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-infrared spectrometer[J]. ACS Photonics, 2019, 6(1): 79-86. doi: 10.1021/acsphotonics.8b01503 |
[14] | Yang T, Huang X L, Ho H P, et al. Compact spectrometer based on a frosted glass[J]. IEEE Photonics Techno Lett, 2017, 29(2): 217-220. doi: 10.1109/LPT.2016.2636340 |
[15] | Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 1017-1020. doi: 10.1126/science.aax8814 |
[16] | Pichette J, Charle W, Lambrechts A. Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan[J]. Proc SPIE, 2017, 10110: 1011014. |
[17] | Yokino T, Kato K, Ui A, et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology[J]. Proc SPIE, 2019, 10931: 1093108. doi: 10.1117/12.2510472 |
[18] | Chen Q, Liang L, Zheng Q L, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electron Adv, 2020, 3(3): 190040. doi: 10.29026/oea.2020.190040 |
[19] | Cao H. Perspective on speckle spectrometers[J]. J Opt, 2017, 19(6): 060402. doi: 10.1088/2040-8986/aa7251 |
[20] | 刘建学, 尹晓慧, 韩四海, 等. 便携式近红外光谱仪研究进展[J]. 河南农业大学学报, 2019, 53(4): 662-670. Liu J X, Yin X H, Han S H, et al. Review of portable near-infrared spectrometers[J]. J Henan Agri Univ, 2019, 53(4): 662-670. |
[21] | 王伟平, 金里. 芯片级硅基光谱仪研究进展[J]. 光谱学与光谱分析, 2020, 40(2): 333-342. Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform[J]. Spectrosc Spectral Anal, 2020, 40(2): 333-342. |
[22] | Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Opt Express, 2013, 21(5): 6584-6600. doi: 10.1364/OE.21.006584 |
[23] | Sefler G A, Shaw T J, Valley G C. Demonstration of speckle-based compressive sensing system for recovering RF signals[J]. Opt Express, 2018, 26(17): 21390-21402. doi: 10.1364/OE.26.021390 |
[24] | Halpaap D, Tiana-Alsina J, Vilaseca M, et al. Experimental characterization of the speckle pattern at the output of a multimode optical fiber[J]. Opt Express, 2019, 27(20): 27737-27744. doi: 10.1364/OE.27.027737 |
[25] | Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Lett, 2020, 20(1): 320-328. doi: 10.1021/acs.nanolett.9b03862 |
[26] | Kurokawa U, Choi B I, Chang C C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization[J]. IEEE Sens J, 2011, 11(7): 1556-1563. doi: 10.1109/JSEN.2010.2103054 |
[27] | Redding B, Popoff S M, Bromberg Y, et al. Noise analysis of spectrometers based on speckle pattern reconstruction[J]. Appl Opt, 2014, 53(3): 410-417. doi: 10.1364/AO.53.000410 |
[28] | Yee G M, Maluf N I, Hing P A, et al. Miniature spectrometers for biochemical analysis[J]. Sens Actuators A Phys, 1997, 58(1): 61-66. doi: 10.1016/S0924-4247(97)80225-7 |
[29] | Ma X, Li M Y, He J J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics J, 2013, 5(2): 6600807. doi: 10.1109/JPHOT.2013.2250944 |
[30] | Chang C C, Lin N T, Kurokawa U, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection[J]. Opt Eng, 2011, 50(11): 114402. doi: 10.1117/1.3645086 |
[31] | Kraft M, Kenda A, Frank A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Anal Bioanal Chem, 2006, 386(5): 1259-1266. doi: 10.1007/s00216-006-0726-5 |
[32] | Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Sci Rep, 2017, 7(1): 40693. doi: 10.1038/srep40693 |
[33] | Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Opt Express, 2014, 22(18): 21541-21550. doi: 10.1364/OE.22.021541 |
[34] | Valley G C, Sefler G A, Shaw T J. Multimode waveguide speckle patterns for compressive sensing[J]. Opt Lett, 2016, 41(11): 2529-2532. doi: 10.1364/OL.41.002529 |
[35] | Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Opt Express, 2008, 16(2): 1056-1061. doi: 10.1364/OE.16.001056 |
[36] | 唐川雁, 史姣姣. 基于变换域的压缩感知快速重构算法[J]. 软件导刊, 2019, 18(7): 96-99. Tang C Y, Shi J J. Fast reconstruction algorithm based on transformation domain for compressed sensing[J]. Softw Guide, 2019, 18(7): 96-99. |
[37] | Brady D J, Gehm M E, Pitsianis N, et al. Compressive sampling strategies for integrated microspectrometers[J]. Intell Integr Microsystems, 2006, 6232: 62320C. doi: 10.1117/12.666124 |
[38] | LU C C, Chen K, Huang L R, et al. Signal recovery for compressive spectrometers[J]. Sens Agric Food Qual Saf X, 2018, 10665: 106650U. |
[39] | Chong X Y, Li E W, Squire K, et al. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array[J]. Appl Phys Lett, 2016, 108(22): 221106. doi: 10.1063/1.4953261 |
[40] | Kim C, Park D, Lee H N. Convolutional neural networks for the reconstruction of spectra in compressive sensing spectrometers[J]. Opt Data Sci Ⅱ, 2019, 10937: 109370L. doi: 10.1117/12.2509548 |
[41] | Zhang S, Dong Y H, Fu H Y, et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors (Basel), 2018, 18(2): 644. doi: 10.3390/s18020644 |
[42] | Hong L Y, Sengupta K. Fully integrated optical spectrometer in visible and Near-IR in CMOS[J]. IEEE Trans Biomed Circuits Syst, 2017, 11(6): 1176-1191. doi: 10.1109/TBCAS.2017.2774603 |
[43] | Oliver J, Lee W B, Lee H N. Filters with random transmittance for improving resolution in filter-array-based spectrometers[J]. Opt Express, 2013, 21(4): 3969-3989. doi: 10.1364/OE.21.003969 |
[44] | Feller S D, Chen H J, Brady D J, et al. Multiple order coded aperture spectrometer[J]. Opt Express, 2007, 15(9): 5625-5630. doi: 10.1364/OE.15.005625 |
[45] | Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Opt Lett, 2012, 37(16): 3384-3386. doi: 10.1364/OL.37.003384 |
[46] | Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9): 956-962. doi: 10.1364/OPTICA.3.000956 |
[47] | Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746-751. doi: 10.1038/nphoton.2013.190 |
[48] | Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Opt Lett, 2016, 41(9): 2029-2032. doi: 10.1364/OL.41.002029 |
[49] | Yang T, Xu C, Ho H P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Opt Lett, 2015, 40(13): 3217-3220. doi: 10.1364/OL.40.003217 |
[50] | Freude W, Fritzsche C, Grau G, et al. Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides[J]. J Lightwave Technol, 1986, 4(1): 64-72. doi: 10.1109/JLT.1986.1074634 |
[51] | Hlubina P. Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern[J]. J Mod Opt, 1994, 41(5): 1001-1014. doi: 10.1080/09500349414550941 |
[52] | Yamaguchi I. A laser-speckle strain gauge[J]. J Phys E: Sci Instrum, 1981, 14(11): 1270. doi: 10.1088/0022-3735/14/11/012 |
[53] | Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Opt Acta: Int J Opt, 1981, 28(10): 1359-1376. doi: 10.1080/713820454 |
[54] | Yamaguchi I, Kobayashi K, Yaroskavsky L P. Measurement of surface roughness by speckle correlation[J]. Opt Eng, 2004, 43(11): 2753-2762. doi: 10.1117/1.1797851 |
[55] | Imai M. Statistical properties of optical fiber speckles[J]. 北海道大學, 1986, 130: 89-104. |
[56] | Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3): 175-180. doi: 10.1364/OPTICA.1.000175 |
[57] | 徐丹阳, 杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现[J]. 光电工程, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152 Xu D Y, Du C N. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electron Eng, 2018, 45(11): 30-40. doi: 10.12086/oee.2018.180152 |
[58] | Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer[J]. Nat Commun, 2016, 7(1): 12995. doi: 10.1038/ncomms12995 |
[59] | Meng Z Y, Li J Q, Yin C J, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP Adv, 2019, 9(1): 015004. doi: 10.1063/1.5052276 |
[60] | Wan N H, Meng F, Schröder T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nat Commun, 2015, 6: 7762. doi: 10.1038/ncomms8762 |
[61] | Kohlgraf-Owens T W, Dogariu A. Transmission matrices of random media: means for spectral polarimetric measurements[J]. Opt Lett, 2010, 35(13): 2236-2238. doi: 10.1364/OL.35.002236 |
[62] | Hang Q, Ung B, Syed I, et al. Photonic bandgap fiber bundle spectrometer[J]. Appl Opt, 2010, 49(25): 4791-4800. doi: 10.1364/AO.49.004791 |
[63] | Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Sci Rep, 2017, 7: 43454. doi: 10.1038/srep43454 |
[64] | Pervez N K, Cheng W, Jia Z, et al. Photonic crystal spectrometer[J]. Opt Express, 2010, 18(8): 8277-8285. doi: 10.1364/OE.18.008277 |
[65] | Momeni B, Hosseini E S, Askari M, et al. Integrated photonic crystal spectrometers for sensing applications[J]. Opt Commun, 2009, 282(15): 3168-3171. doi: 10.1016/j.optcom.2009.04.052 |
[66] | Momeni B, Yegnanarayanan S, Soltani M, et al. Silicon nanophotonic devices for integrated sensing[J]. Journal of Nanophotonics, 2009, 3(1): 031001. doi: 10.1117/1.3122986 |
[67] | Soltani M, Li Q, Yegnanarayanan S, et al. Large-scale array of small high-Q microdisk resonators for onchip spectral analysis[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009: 703-704. |
[68] | Xia Z X, Eftekhar A A, Soltani M, et al. Near infrared absorption sensor based on large-scale array of miniaturized microdonut resonators[C]. Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, 2010: IME6. |
[69] | Xia Z X, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Opt Exp, 2011, 19(13): 12356-12364. doi: 10.1364/OE.19.012356 |
[70] | Babin S, Bugrov A, Cabrini S, et al. Digital optical spectrometer-on-chip[J]. Appl Phys Lett, 2009, 95(4): 041105. doi: 10.1063/1.3190199 |
[71] | Calafiore G, Koshelev A, Dhuey S, et al. Holographic planar lightwave circuit for on-chip spectroscopy[J]. Light: Sci Appl, 2014, 3(9): e203. doi: 10.1038/lsa.2014.84 |
[72] | Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5 |
[73] | 王国栋, 夏果, 李志远, 等. 便携式紫外-可见光谱仪设计及关键技术研究[J]. 光电工程, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195 Wang G D, Xia G, Li Z Y, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electron Eng, 2018, 45(10): 70-81. doi: 10.12086/oee.2018.180195 |
[74] | Xu Z C, Wang Z L, Sullivan M, et al. Multimodal multiplex spectroscopy using photonic crystals[J]. Opt Express, 2003, 11(18): 2126-2133. doi: 10.1364/OE.11.002126 |
[75] | Mazilu M, Vettenburg T, Di Falco A, et al. Random super-prism wavelength meter[J]. Opt Lett, 2014, 39(1): 96-99. doi: 10.1364/OL.39.000096 |
[76] | Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer[J]. Opt Lett, 2015, 40(14): 3264-3267. doi: 10.1364/OL.40.003264 |
[77] | Yang T, Peng J X, Li X A, et al. Compact broadband spectrometer based on upconversion and downconversion luminescence[J]. Opt Lett, 2017, 42(21): 4375-4378. doi: 10.1364/OL.42.004375 |
[78] | Wang P, Menon R. Computational spectrometer based on a broadband diffractive optic[J]. Opt Express, 2014, 22(12): 14575-14587. doi: 10.1364/OE.22.014575 |
[79] | Wu L, Cai Z J, Su Y F, et al. Simulative study on speckle-spectral properties of a random pixelated grating[J]. J Opt Soc Am A, 2019, 36(8): 1410-1417. doi: 10.1364/JOSAA.36.001410 |
[80] | Çetindağ Ş K, Toy M F, Ferhanoğlu O, et al. A speckle-enhanced prism spectrometer with high dynamic range[J]. IEEE Photonics Technol Lett, 2018, 30(24): 2139-2142. doi: 10.1109/LPT.2018.2879247 |
[81] | 王贤俊, 龙亚雪, 郑海燕, 等. 超高分辨力微型光谱仪的光学系统设计[J]. 光电工程, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228 Wang X J, Long Y X, Zheng H Y, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electron Eng, 2018, 45(10): 82-90. doi: 10.12086/oee.2018.180228 |
Overview: Fast, accurate and nondestructive spectral analysis technique is important to differentiate matters and widely used in the fields of scientific research, information, biomedical, pharmaceutical detection, agriculture, environment, and security. The existing spectroscopic analysis equipments usually use individual optical elements such as gratings, prisms and interferometer to obtain spectral information, and therefore the whole system is usually bulky, complex and expensive, which are difficult to adapt to portable application scenarios such as on-site rapid detection, point-of-care diagnostics, and light-load platform in low-resource settings. It is not straight forward to minimize the conventional spectrometer without a loss of performance because the spectral resolution is usually associated with the length of light path. Novel mechanisms and advanced techniques are required to tackle this issue. With the rapid developments of the novel nanophotonic techniques and micro-nano fabrication methods, spectral analysis has been achieved on a single chip with decent spectral resolution, for example, quantum dot microspectrometer, photonic crystal microspectrometer, and so on, which shows great advantages in volume, weight, integration, cost, etc. In addition, combining such minimized spectrometers together with the cloud technology and big data technology is expected to significantly improve the efficiency of spectral information in collection, distribution and analysis, which is important for timely, accurate and portable applications. In particular, the computational spectral technology based on the speckle inspection can obtain high-resolution spectral information by recording and analyzing the speckle patterns formed by the light scattering process. In general, the speckle detection-based spectral analysis techniques are divided into two categories: the waveguide types and the normal incidence types. The waveguide types include multimode fibers, multimode waveguides, and in-plane scatters. Different modes have different propagation constants and thus different phase delay. Different scattering paths also result in different phase delay. The light interference therefore induces the generation of the wavelength-dependent speckles. The normal incidence type usually includes disordered micro-nano structures such as nanoparticles, micro-holes, and frosted glass. Similar optical interference phenomenon occurs and generates wavelength-dependent speckles. By initially calibrating the speckle generation structures by a series of monochromatic light and dealing the speckle with the compressive sensing algorithm, the spectral information of the target spectrum can be reconstructed. This paper will introduce the relevant technical principles and technical development status, analyze the existing technical performance, advantages and disadvantages, discuss and summarize the future development direction and application prospects.
Schematic diagram of micro-computing spectrometer for speckle detection. (a) Schematic of speckle pattern distribution on the detector array after the incident light passing through the dispersive component; (b) Schematic diagram of spectral reconstruction measured based on mapping matrix
Diagram of miniature spectrometer with multimode fiber. (a) Speckle pattern intensity distribution at the end of a 5 m long multimode fiber with varying input wavelength, spectral correlation function of the different length multimode fiber, and 5 m long multimode fiber spectrometer can resolve narrow-band laser spectral lines[45]; (b) Fiber spectrometer with wavelength division multiplexers and a 1-to-7 fan-out fiber bundle, reconstructed spectrum test results in the 100 nm bandwidth[48]; (c) Miniature multimode fiber spectrometer using optical switch space-division multiplexing, spectral correlation function, reconstructed narrow spectral lines test results[59]; (d) Miniature spectrometer using multimode tapered optical fibre, speckle pattern intensity distribution with varying input wavelength, and reconstructed narrow spectral lines test results[60]
Diagram of a miniature spectrometer with a planar strip optical waveguide. (a) Schematic of a spiral spectrometer, speckle pattern intensity distribution with varying input wavelength, spectral correlation function, and reconstructed narrow laser spectral lines test results[46]; (b) Schematic of input switch matrix silicon multimode waveguide spectrometer, and reconstructed test results[63]
Diagram of miniature spectrometer with planar photonic crystal and micro-ring optical waveguide. (a) Schematic of integrated photonic crystal spectrometers, and speckle distribution with different wavelengths at the output waveguide[65]; (b) Micro-spectrometer based on miniaturized microdonut resonators array, out-of-plane speckle pattern intensity distribution with varying input wavelength, and reconstructed spectral test results[69]; (c) Schematic of an integrated digital plane hologram spectrometer, speckle pattern intensity distribution, and reconstructed spectral test results[71]
Miniature spectrometer with plane scatter light guide structure. (a) SEM image of the disordered photonic spectrometer, the bottom area is an enlarged image with a scale of 1 μm, the right area is numerical simulation and experimental results at 1500 nm[47]; (b) Calibration matrix of disordered photonic structure[47]; (c) The spectral correlation function based on the average intensity of all detection channels[47]; (d) Disordered photonic spectrometer can resolve narrow-band laser spectral lines[47]
Part of spatial type spectrometer. (a) Schematic of miniature spectrometer based on inhomogeneous and self-assembled disordered photonic crystals, speckle pattern distribution, and spectral test results[74]; (b) SEM image and far-field speckle pattern of alumina particles[75]
Space scattering structure type spectrometer. (a) Schematic of miniature spectrometer based on hole array, speckle distribution and spectrum test results[49]; (b) Schematic of a miniature spectrometer based on frosted glass, and the spectrum test results in the visible and ultraviolet bands[14]; (c) The frosted glass spectrometer using up conversion and down conversion materials spectral test results in the three bands of ultraviolet, visible and infrared[77]
Polychromats, grating, and nanoparticles structure type spectrometer. (a) Spectral analysis based on the polychromats: the groove depth distribution, speckle pattern distribution and correlation function of the two types of polychromats[33]; (b) Schematic diagram of the random grating array speckle spectrometer[79]; (c) Schematic of nanoparticles speckle-enhanced prism spectrometer[80]