双视角三维测量系统同时标定方法

赵涵卓,高楠,孟召宗,等. 双视角三维测量系统同时标定方法[J]. 光电工程,2021,48(3):200127. doi: 10.12086/oee.2021.200127
引用本文: 赵涵卓,高楠,孟召宗,等. 双视角三维测量系统同时标定方法[J]. 光电工程,2021,48(3):200127. doi: 10.12086/oee.2021.200127
Zhao H Z, Gao N, Meng Z Z, et al. Method of simultaneous calibration of dual view 3D measurement system[J]. Opto-Electron Eng, 2021, 48(3): 200127. doi: 10.12086/oee.2021.200127
Citation: Zhao H Z, Gao N, Meng Z Z, et al. Method of simultaneous calibration of dual view 3D measurement system[J]. Opto-Electron Eng, 2021, 48(3): 200127. doi: 10.12086/oee.2021.200127

双视角三维测量系统同时标定方法

  • 基金项目:
    国家重大科学仪器设备开发重点专项(2017YFF0106404);国家自然科学基金资助项目(51675160);河北省应用基础研究计划重点基础研究资助项目(15961701D)
详细信息
    作者简介:
    通讯作者: 高楠(1982-),男,博士研究生,副教授,主要从事光学测量与光谱检测方面的研究。E-mail: ngao@hebut.edu.cn
  • 中图分类号: TH741

Method of simultaneous calibration of dual view 3D measurement system

  • Fund Project: Major Project of the Scientific Equipment Development of China (2017YFF0106404), National Natural Science Foundation of China (51675160), and Major Basic Research Projects of Hebei Applied Basic Research Program (15961701D)
More Information
  • 针对现有标定方法在相机无公共视场情况下的局限性,本文提出使用双平面标定板对双相机进行同时标定的方法。通过推导两个相机与两个标定板间的坐标变换,将待标定相机与参考相机的相对位姿关系的求解转换为较为成熟的手眼标定方程求解。通过实验验证:该方法可实现双相机的同时标定,且方法的绝对误差不超过0.089 mm,较为可靠;在双视角三维测量系统中,与相位-深度的累积误差不超过0.116 mm,可为进一步的数据融合提供可靠的初值。此外,由于本方法灵活方便,可适用于多视角三维测量系统的同时标定。

  • Overview: The fringe projection measurement method is widely used in various fields due to its simple structure, high precision, and resolution, full field measurement, etc. The research on the single-view system of the fringe projection measurement method has been relatively mature. The dual-view fringe projection measurement system is an extension of the single-view fringe projection measurement system, a larger range of three-dimensional geometric information can be obtained by expanding the camera's field of view. In the dual-view fringe projection measurement system, the three-dimensional measurement results of the subsystem are always restored in the camera coordinate system, while the two camera coordinate systems are independent of each other in the dual-view fringe projection measurement system. Therefore, it is necessary to solve the transformation relationship between the two camera coordinate systems, the process of solving the transformation relationship between the two camera coordinate systems is called global calibration. Global calibration is the most important task in the calibration of dual and multi view systems. However, the existing global calibration methods require expensive auxiliary equipment when the two cameras have no common field of view, which adds a certain cost to the calibration, and when the viewing angle of the system is more than two, the method of relying on the auxiliary equipment is limited. Aiming at the limitations of the existing global calibration methods, this paper proposes a method to achieve dual-view global calibration by using two plane calibration boards: Firstly, through a series of derivation, the problem of solving the transformation matrix between the two camera coordinate systems is transformed into the problem of solving the hand-eye calibration equation which is more mature in the field of robot; Secondly, adjust the two calibration boards to the appropriate position according to the placement of the camera, and fix the two calibration boards; Thirdly, place the two calibration boards at several positions in the field of view of the two cameras at the same time to obtain several equations; Finally, the conversion matrix between the two cameras is obtained by using the quaternion method, least square method, and nonlinear optimization. The method identified in this paper does not require additional auxiliary equipment, and it is proved by quantitative experiments: this method can realize the calibration of dual cameras simultaneously and the absolute error of the method does not exceed 0.089 mm, which is relatively reliable; in the dual-view 3D measurement system, the cumulative error of global calibration and phase-depth does not exceed 0.116 mm, which can provide a reliable initial value for further data fusion. In addition, the global calibration method determined in this paper is suitable for multi-view 3D measurement systems. When the number of cameras is more than two, the calibration board corresponding to the number of cameras can be added to achieve simultaneous calibration of multiple cameras.

  • 加载中
  • 图 1  测量系统模型

    Figure 1.  Model of measurement system

    图 2  全局标定示意图

    Figure 2.  Global calibration diagram

    图 3  双视角三维测量系统

    Figure 3.  Double vision 3D measurement system

    图 4  双棋盘格标定板

    Figure 4.  Double checkerboard calibration board

    图 5  全局标定精度验证

    Figure 5.  Global calibration accuracy verification

    图 6  选取的验证距离

    Figure 6.  Selected verification distance

    图 7  双圆环标定板

    Figure 7.  Double ring targets

    图 8  视角1恢复的台阶三维形貌

    Figure 8.  Three dimensional topography of steps restored by perspective 1

    图 9  相机2视角恢复的台阶三维形貌

    Figure 9.  Three dimensional topography of steps restored by perspective 2

    图 10  两视角融合效果图

    Figure 10.  Fusion of two perspectives

    表 1  全局标定精度验证结果

    Table 1.  Verification results of global calibration accuracy

    摆放位置最大误差/mm最小误差/mm平均误差/mm
    10.0890.0360.075
    20.0770.0390.069
    30.0840.0450.071
    下载: 导出CSV

    表 2  双视角测量结果(单位:mm)

    Table 2.  Measurement results of double view angle (unit: mm)

    台阶实际间距
    17.60318.42213.25818.212
    视角1测量间距17.63718.38613.29118.255
    视角1测量误差0.0340.0360.0330.043
    视角2测量间距17.64318.38713.22518.253
    视角2测量误差0.0400.0350.0330.041
    双视角测量结果18.40817.61113.99417.618
    双视角测量误差0.1020.0970.0900.116
    下载: 导出CSV
  • [1]

    白雪飞, 张宗华. 基于彩色条纹投影术的三维形貌测量[J]. 仪器仪表学报, 2017, 38(8): 1912-1925. doi: 10.3969/j.issn.0254-3087.2017.08.009

    Bai X F, Zhang Z H. 3D shape measurement based on colour fringe projection techniques[J]. Chin J Sci Instrum, 2017, 38(8): 1912-1925. doi: 10.3969/j.issn.0254-3087.2017.08.009

    [2]

    唐燕, 陈文静, 张强, 等. 神经网络获取三维面形研究[J]. 光电工程, 2007, 34(12): 61-65. doi: 10.3969/j.issn.1003-501X.2007.12.013

    Tang Y, Chen W J, Zhang Q, et al. BP neural network applied to 3D object measurement based on fringe pattern projection[J]. Opto-Electron Eng, 2007, 34(12): 61-65. doi: 10.3969/j.issn.1003-501X.2007.12.013

    [3]

    Li B W, Zhang S. Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process[J]. Opt Express, 2017, 25(22): 27270-27282. doi: 10.1364/OE.25.027270

    [4]

    范生宏, 刘昌儒, 亓晓彤, 等. 结构光三维测量系统精度分析及验证[J]. 光电工程, 2014, 41(5): 52-56. doi: 10.3969/j.issn.1003-501X.2014.05.009

    Fan S H, Liu C R, Qi X T, et al. Accuracy analysis and verification of structured light 3D measurement system[J]. Opto-Electron Eng, 2014, 41(5): 52-56. doi: 10.3969/j.issn.1003-501X.2014.05.009

    [5]

    罗剑, 袁家虎. 光栅投影式三维摄影测量仪的几何标定方法[J]. 光电工程, 2005, 32(11): 43-48, 67. doi: 10.3969/j.issn.1003-501X.2005.11.012

    Luo J, Yuan J H. Geometric calibration method of 3D photogrammetric instruments using grating projection[J]. Opto-Electron Eng, 2005, 32(11): 43-48, 67. doi: 10.3969/j.issn.1003-501X.2005.11.012

    [6]

    Chen M Y, Tang Y C, Zhou X J, et al. High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm[J]. Opt Lasers Eng, 2019, 122: 170-183. doi: 10.1016/j.optlaseng.2019.06.011

    [7]

    苏显渝, 程晓雪, 郭履容. 三维物体360°面形自动测量方法[J]. 光学学报, 1989, 9(7): 670-672. doi: 10.3321/j.issn:0253-2239.1989.07.017

    Su X Y, Cheng X X, Guo L R. An automated method for 360° surface measurement of 3-D objects[J]. Acta Opt Sin, 1989, 9(7): 670-672. doi: 10.3321/j.issn:0253-2239.1989.07.017

    [8]

    鲁亚楠, 万子敬, 王向军. 一种无公共视场相机位置关系的求解方法[J]. 应用光学, 2017, 38(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703010.htm

    Lu Y N, Wan Z J, Wang X J. Solution to relative position of cameras without public FOV[J]. J Appl Opt, 2017, 38(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703010.htm

    [9]

    Liu Z, Meng Z Z, Gao N, et al. Calibration of the relative orientation between multiple depth cameras based on a three-dimensional target[J]. Sensors(Basel), 2019, 19(13): 3008. doi: 10.3390/s19133008

    [10]

    Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Trans Pattern Anal Mach Intell, 1992, 14(2): 239-256. doi: 10.1109/34.121791

    [11]

    楚圣辉, 张慧萌, 陈硕, 等. 大场景下多目立体视觉标定方法的研究[J]. 现代计算机(专业版), 2017(15): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS201715008.htm

    Chu S H, Zhang H M, Chen S, et al. Research on the calibration method of multi eye stereo vision in large scenes[J]. Mod Comput, 2017(15): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS201715008.htm

    [12]

    潘华伟, 杨振先, 高春鸣, 等. 一种基于平面模板的多摄像机标定方法[J]. 计算机应用研究, 2011, 28(11): 4357-4360. doi: 10.3969/j.issn.1001-3695.2011.11.096

    Pan H W, Yang Z X, Gao C M, et al. Multi-camera calibration method using planar patterns[J]. Appl Res Comput, 2011, 28(11): 4357-4360. doi: 10.3969/j.issn.1001-3695.2011.11.096

    [13]

    郎威, 薛俊鹏, 李承杭, 等. 基于旋转台参数标定实现多视角点云拼接[J]. 中国激光, 2019, 46(11): 1104003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911031.htm

    Lang W, Xue J P, Li C H, et al. Splicing of multi-view point clouds based on calibrated parameters of turntable[J]. Chinese J Lasers, 2019, 46(11): 1104003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911031.htm

    [14]

    Zhang Z, Zhang D, Peng X. Performance analysis of a 3D full-field sensor based on fringe projection[J]. Opt Lasers Eng, 2004, 42(3): 341-353. doi: 10.1016/j.optlaseng.2003.11.004

    [15]

    周灿林, 司书春, 高成勇, 等. 基于格莱姆-施密特正交化两步相移轮廓术[J]. 光电工程, 2013, 40(6): 37-42. doi: 10.3969/j.issn.1003-501X.2013.06.007

    Zhou C L, Si S C, Gao C Y, et al. Two-step phase-shifting profilometry based on Gram-Schmidt orthonormalization[J]. Opto-Electron Eng, 2013, 40(6): 37-42. doi: 10.3969/j.issn.1003-501X.2013.06.007

    [16]

    Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Trans Robot Autom, 1989, 5(3): 345-358. doi: 10.1109/70.34770

    [17]

    毛剑飞, 邵黄芳, 蒋莉, 等. 求解方程RaRx=RxRb的四元数几何研究[J]. 中国图象图形学报, 2010, 15(6): 951-957. doi: 10.11834/jig.20100615

    Mao J F, Shao H F, Jiang L, et al. Quaternion geometrical analysis on solving equation RaRx=RxRb[J]. J Image Graph, 2010, 15(6): 951-957. doi: 10.11834/jig.20100615

    [18]

    王昌云, 李立君. 基于四元数的机器人手眼标定算法[J]. 传感器与微系统, 2019, 38(12): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201912036.htm

    Wang C Y, Li L J. Hand-eye calibration algorithm for robot based on quaternion[J]. Transducer Microsyst Technol, 2019, 38(12): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201912036.htm

    [19]

    胡为, 刘冲, 傅莉, 等. 一种高精度的机器人手眼标定算法[J]. 火力与指挥控制, 2018, 43(9): 19-24. doi: 10.3969/j.issn.1002-0640.2018.09.005

    Hu W, Liu C, Fu L, et al. An algorithm for robot hand eye calibration with high accuracy[J]. Fire Control Comm Control, 2018, 43(9): 19-24. doi: 10.3969/j.issn.1002-0640.2018.09.005

    [20]

    魏振忠, 高明, 周富强, 等. 基于辅助摄像机的机器人延伸手眼标定方法[J]. 光电工程, 2008, 35(9): 76-80, 121. doi: 10.3969/j.issn.1003-501X.2008.09.016

    Wei Z Z, Gao M, Zhou F Q, et al. Robot extended eye-in-hand calibration method based on an assistant camera[J]. Opto-Electron Eng, 2008, 35(9): 76-80, 121. doi: 10.3969/j.issn.1003-501X.2008.09.016

  • 加载中

(10)

(2)

计量
  • 文章访问数:  4221
  • PDF下载数:  1411
  • 施引文献:  0
出版历程
收稿日期:  2020-04-18
修回日期:  2020-09-14
刊出日期:  2021-03-15

目录

/

返回文章
返回