Among the existing LiDAR technologies, the LiDAR with frequency modulation continuous wave (FMCW) format has the advantages of high resolution, high measurement accuracy, light weight, low power consumption compared with the conventional time-of-flight LiDAR. Benefitting from adopting continuous lightwave for measurement, the FMCW LiDAR also has unique performances such as high sensitivity, rich information, and easy processing and demodula-tion. It is highly competitive for high-resolution, high-accuracy detection needs, and has the potential for very good integration, miniaturization, and low energy consumption. This paper introduces the basic principles of different Li-DAR systems, especially focusing on the important parameters of FMCW LiDAR, and classifies the research work of FMCW LiDAR in the past ten years into different types based on the light source scheme, and discusses the features of various schemes.
Home > Journal Home > Opto-Electronic Research Reviews
Opto-Electronic Research Reviews
ISSN:
CN:
quarterly
CN:
quarterly
[Opto-Electron Eng, 2019, 46(7)]Basics and developments of frequency modulation continuous wave LiDAR
Author Affiliations

First published at:Sep 20, 2019
Opto-Electronic Research Reviews Vol. 03, Issue 03, pp. e201907001 (2019) DOI:10.12086/oee.2019.190038
Abstract
References
[1] Swatantran A, Tang H, Barrett T, et al. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar[J]. Scientific Reports, 2016, 6(1): 28277.
[2] Jaboyedoff M, Oppikofer T, Abellán A, et al. Use of LIDAR in landslide investigations: a review[J]. Natural Hazards, 2012, 61(1): 5–28.
[3] Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography: Earth and Envi-ronment, 2003, 27(1): 88–106.
[4] Goyer G G, Watson R. The laser and its application to meteorol-ogy[J]. Bulletin of the American Meteorological Society, 1963, 44(9): 564–570.
[5] Gschwendtner A B, Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383–396.
[6] Pfrunder A, Borges P V K, Romero A R, et al. Real-time auton-omous ground vehicle navigation in heterogeneous environments using a 3D LiDAR[C]//Proceedings of 2017 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 2017: 2601–2608.
[7] Cracknell A P, Hayes L. Introduction to Remote Sensing[M]. 2nd ed. Boca Raton: CRC Press, 2007.
[8] Martin A, Dodane D, Leviandier L, et al. Photonic integrated circuit-based FMCW coherent LiDAR[J]. Journal of Lightwave Technology, 2018, 36(19): 4640–4645.
[9] Zheng J. Analysis of optical frequency-modulated continu-ous-wave interference[J]. Applied Optics, 2004, 43(21): 4189–4198.
[10] Wolff C. Frequency-modulated continuous-wave radar (FMCW Radar)[EB/OL]. (2016-12-01) [2019-01-08]. http://demonstra- tions.wolfram.com/FrequencyModulatedContinuousWaveFMCWRadar/.
[11] Bissonnette L R. Multiple-scattering lidar equation[J]. Applied Optics, 1996, 35(33): 6449–6465.
[12] Burdic W S. Radar Signal Analysis[M]. Englewood Cliffs: Pren-tice-Hall, 1968.
[13] Lichti D D, Jamtsho S. Angular resolution of terrestrial laser scanners[J]. The Photogrammetric Record, 2006, 21(114): 141–160.
[14] Curlander J C, McDonough R N. Synthetic Aperture Radar[M]. New York, NY, USA: John Wiley & Sons, 1991.
[15] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 2012, 30(8): 1015–1024.
[16] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional syn-thetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983–1985.
[17] Skolnik M I. Radar Handbook[M]. New York NY, USA: McGraw-Hill, 1970.
[18] Buell W, Marechal N, Buck J, et al. Demonstration of synthetic aperture imaging ladar[J]. Proceedings of SPIE, 2005, 5791: 152–166.
[19] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621–7629.
[20] Satyan N, Vasilyev A, Rakuljic G, et al. Precise control of broadband frequency chirps using optoelectronic feedback[J]. Optics Express, 2009, 17(18): 15991–15999.
[21] Satyan N, Vasilyev A, Rakuljic G, et al. Phase-locking and co-herent power combining of broadband linearly chirped optical waves[J]. Optics Express, 2012, 20(23): 25213–25227.
[22] DiLazaro T, Nehmetallah G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Optics Express, 2018, 26(3): 2891–2904.
[23] DiLazaro T, Nehmetallah G. Large depth high-precision FMCW tomography using a distributed feedback laser array[J]. Pro-ceedings of SPIE, 2018, 10539: 1053906.
[24] Behroozpour B, Sandborn P A M, Quack N, et al. 11.8 Chip-scale electro-optical 3D FMCW lidar with 8μm ranging preci-sion[C]//Proceedings of 2016 IEEE International Solid-State Cir-cuits Conference, San Francisco, CA, USA, 2016: 214–216.
[25] Poulton C V, Yaacobi A, Cole D B, et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[J]. Optics Letters, 2017, 42(20): 4091–4094.
[26] Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692–3694.
[27] Crouch S, Barber Z W. Laboratory demonstrations of interfero-metric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237–24246.
[28] Carrara W, Majewski R M, Goodman R S. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
[29] Jakowatz Jr C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Boston, MA, USA: Springer, 1996.
[30] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofo-cus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835.
[31] Yocky D, Wahl D, Jakowatz Jr C. Spotlight-mode SAR image formation utilizing the chirp Z-transform in two dimen-sions[C]//Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 2006: 4180–4182.
[32] Pierrottet D, Amzajerdian F, Petway L, et al. Linear FMCW laser radar for precision range and vector velocity measurements[J]. MRS Online Proceedings Library Archive, 2008, 1076: 1076–K04–06.
[33] Wang N, Wang R, Mo D, et al. Inverse synthetic aperture LADAR demonstration: system structure, imaging processing, and ex-periment result[J]. Applied Optics, 2018, 57(2): 230–236.
[34] Lyu Y K, Yang T X, Lu Z Y, et al. External modulation method for generating accurate linear optical FMCW[J]. IEEE Photonics Technology Letters, 2017, 29(18): 1560–1563.
[35] Li G Z, Wang R, Song Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. Applied Optics, 2017, 56(12): 3257–3262.
[36] Chen V C, Ling H. Time-frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston, MA, USA: Artech House, 2002.
[37] Shimizu K, Horiguchi T, Koyamada Y. Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter[J]. Optics Letters, 1992, 17(18): 1307–1309.
[38] Lu Z Y, Yang T X, Li Z Y, et al. Broadband linearly chirped light source with narrow linewidth based on external modulation[J]. Optics Letters, 2018, 43(17): 4144–4147.
[39] Yariv A, Yeh P. Photonics: Optical Electronics in Modern Com-munications[M]. 6th ed. New York, NY, USA: Oxford University Press, 2006.
Keywords:
Funds:
National Natural Science Foundation of China (NSFC) (61471256, 61575143, 61275084, 61377078) and Natural Sci-ence Foundation of Tianjin (18JCYBJC16800)
Export Citations as:
For
Get Citation:
Lu Zhaoyu, Ge Chunfeng, Wang Zhaoying, et al. Basics and developments of frequency modulation continuous wave LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190038.