The metasurface is an ultra-thin two-dimensional planar array that enables multi-functional and extraordinary elec-tro-magnetic control. It consists of structural units of metamaterials which can flexibly and effectively control the phase, polarization mode and propagation mode of electromagnetic waves. Therefore, it shows great potentials and pro-spects in various applications including the controllable “smart” surfaces, novel waveguide structures, electromag-netic wave absorption and the miniaturized cavity resonators. In this review, we first introduce basic concepts and background of metasurfaces, and then summarize the design and development of several absorptive metasurface devices in the infrared & terahertz (THz) bands and finally discuss its potential problems and prospective in future.
Home > Journal Home > Opto-Electronic Reports
Opto-Electronic Reports
ISSN:
CN:
quarterly
CN:
quarterly
[Opto-Electron Eng, 2019, 46(7)]Progress on infrared and terahertz electro-magnetic absorptive metasurface
Author Affiliations

First published at:Sep 20, 2019
Abstract
References
[1] Pan Q K. Progress of mid-infrared solid-state laser[J]. Chinese Journal of Optics, 2015, 8(4): 557–566.
潘其坤. 中红外固体激光器研究进展[J]. 中国光学, 2015, 8(4): 557–566.
[2] Sun X, Han L, Wang K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 54(5): 050007.
孙骁, 韩隆, 王克强. 直接抽运中红外固体激光器研究进展[J]. 激光与光电子学进展, 2015, 54(5): 050007.
[3] Wang Z X, Fan X. The development of infrared guided missiles and its key technologies[J]. Winged Missiles Journal, 2009(10): 14–19.
汪中贤, 樊祥. 红外制导导弹的发展及其关键技术[J]. 飞航导弹, 2009(10): 14–19.
[4] Wang R F, Zhang Y P, Xu Z Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S1): 576–579.
王瑞凤, 张彦朴, 许志艳. 激光技术军事应用的现状及发展趋势[J]. 红外与激光工程, 2007, 36(S1): 576–579.
[5] Zhong M, Ren G. 3~5μm medium infrared laser counter-measure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3–6.
钟鸣, 任钢. 3~5μm中红外激光对抗武器系统[J]. 四川兵工学报, 2007, 28(1): 3–6.
[6] Han X, Jiang D W, Wang G W, et al. New Recent advances of mid-infrared lasers and detec-tors in antimonide-based nanostructures[J]. China Basic Science, 2017, 19(6): 41–46.
韩玺, 蒋洞微, 王国伟, 等. 锑化物纳米结构的中红外激光器与探测器的新进展[J]. 中国基础科学, 2017, 19(6): 41–46.
[7] Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3 μm [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A15–A28.
[8] Tan G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Journal of Optics, 2013, 6(4): 501–512.
谭改娟, 谢冀江, 张来明, 等. 中波红外激光技术最新进展[J]. 中国光学, 2013, 6(4): 501–512.
[9] Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3[J]. Applied Physics Letters, 1967, 10(5): 167–170.
[10] Wang L, Huang H T, Shen D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22(16): 19495–19503.
[11] Zhu X S, Jain R. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Applied Optics, 2006, 45(27): 7118–7125.
[12] Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser[J]. Nature, 2002, 415(6874): 883–887.
[13] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301–305.
[14] Brida D, Marangoni M, Manzoni C, et al. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifi-er[J]. Optics Letters, 2008, 33(24): 2901–2903.
[15] Chalus O, Bates P K, Smolarski M, et al. Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz[J]. Optics Express, 2009, 17(5): 3587–3594.
[16] Chen Y B, Wang H Y, Lu Q S, et al. Optically pumped
mid-infrared gas lasers[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010005.
陈育斌, 王红岩, 陆启生, 等. 光抽运中红外气体激光器[J]. 激光与光电子学进展, 2015, 52(1): 010005.
[17] Sorokina I T, Vodopyanov K L. Solid-State Mid-Infrared Laser Sources[M]. New York: Springer, 2003: 220–245.
[18] Shen D Y, Fan D Y. Mid-infrared Lasers[M]. Beijing: National Defense Industry Press, 2015: 152–163.
沈德元, 范滇元. 中红外激光器[M]. 北京: 国防工业出版社, 2015: 152–163.
[19] Kim J S, Park R H. Feature-based block matching algorithm using integral projections[J]. Electronics Letters, 1989, 25(1): 29–30.
[20] Zhu X S, Jain R. Compact 2W wavelength-tunable Er:ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381–2383.
[21] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 2007, 32(1): 26–28.
[22] Huang Y F, Peng Y F, Wei X B, et al. Watt-level mid-infrared 2.8μm mid-infared Er:ZBLAN fiber laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502007.
黄园芳, 彭跃峰, 魏星斌, 等. 瓦级连续波2.8μm中红外Er:ZBLAN光纤激光器[J]. 中国激光, 2012, 39(5): 0502007.
[23] Shen Y L, Huang K, Zhou S Q, et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502008.
沈炎龙, 黄珂, 周青松, 等. 10W级高效率单模中红外2.8μm光纤激光器[J]. 中国激光, 2015, 42(5): 0502008.
[24] Yang Q L, Miao L L, Jiang G B, et al. Modeling the broadband mid-infrared dispersion compensator based on ZBLAN microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(7): 728–731.
[25] Tokita M, Murakami S, Shimizu M, et al. Liquid-cooled 24W mid-infrared Er:ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062–3064.
[26] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800nm[J]. Optics Letters, 2007, 32(5): 454–456.
[27] Bernier M, Faucher D, Caron N, et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941–16946.
[28] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882–2885.
[29] Aydin Y O, Faucher V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542–4545.
[30] Ma W Z, Wang T S, Wang F R, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662.
马万卓, 王天枢, 王富任, 等. 2μm可调谐高重复频率主动锁模光纤激光器[J]. 光电工程, 2018, 45(10): 170662.
[31] Li W W, Huang Y Z, Luo Z Q. Composite two-dimensional material GO-MoS2-based Passively mode-locked Erbi-um-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653.
李维炜, 黄义忠, 罗正钱. 复合二维材料GO-MoS2锁模掺铒光纤激光器[J]. 光电工程, 2018, 45(10): 170653.
[32] Hu X L, Yan Z J, Huang Q Q, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741.
胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J]. 光电工程, 2018, 45(10): 170741.
[33] Frerichs C, Tauermann T. Q-switched operation of laser diode
pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706–707.
[34] Tokita S, Murakami M, Shimiz S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812–2814.
[35] Shen Y L, Wang Y S, Luan K P, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 2017, 123(4): 105.
[36] Shen Y L, Wang Y S, Luan K P, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659.
[37] Zhang T, Feng F Y, Zhang H, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film[J]. Laser Physics Letters, 2016, 13(7): 075102.
[38] Tang P H, Wu M, Wang Q K, et al. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573–1576.
[39] Wei C, Wang X S, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233–3236.
[40] Tokita S, Murakami M, Shimizu S, et al. Graphene Q-switching of a 3 μm Er:ZBLAN fiber laser[C]//Proceedings of Advanced Solid-State Lasers Congress, 2013.
[41] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713–24718.
[42] Ning S G, Feng G Y, Dai S Y, et al. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8(2): 025121.
[43] Yang L L, Kang Z, Huang B, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber la-ser[J]. Optics Letters, 2018, 43(21): 5459–5462.
[44] Wang S W, Tang Y L, Yang J L, et al. MoS2 Q-switched 2.8 μm Er:ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101.
[45] Wang S Q, Deng Y, Zhang Y L, et al. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser[J]. Acta Physica Sinica, 2016, 65(4): 044206.
王少奇, 邓颖, 张永亮, 等. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生[J]. 物理学报, 2016, 65(4): 044206.
[46] Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623–626.
[47] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226–4228.
[48] Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855–4858.
[49] Qin Z P, Xie G Q, Zhao C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56–59.
[50] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7–10.
[51] Shen Y L, Wang Y S, Chen H W, et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 2017, 7: 14913.
[52] Shu S L, Hou G Y, Feng J, et al. Progress of optically pumped GaSb based semiconductor disk laser[J]. Opto-Electronic Advances, 2018, 1(2): 170003.
Funds:
the Pearl River Nova Program of Guangzhou (201710010058) and the Fundamental Research Funds for the Central Universities of South China University of Technology (2018MS16)
Export Citations as:
For
Get Citation:
Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070.
Next: [Opto-Electron Eng, 2019, 46(7)]Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm