Terahertz (THz) waves have a good transmissivity through non-polar materials, and have no ionization effects on biomedical tissues. Therefore, it is ideal for the applications such as non-destructive testing and biomedical imaging. The imaging system based on THz quantum well photodetectors (THz QWPs) has higher imaging res-olution, faster imaging speed, higher signal-to-noise ratio, and more compact structure than the imaging systems based on other detectors, as the THz QWPs have fast response, high responsivity, low noise equivalent power, and tiny size. This paper reviews the research progress of the imaging technology based on THz QWPs. And the factors affecting the core indicators of the imaging system are analyzed and summarized. Using more stable fixtures to mount the THz QWPs, improving the device response speed, detection sensitivity, array size, can improve the key performance of imaging systems effectively.
Home > Journal Home > Opto-Electronic Research Reviews
Opto-Electronic Research Reviews
ISSN:
CN:
quarterly
CN:
quarterly
[Opto-Electron Eng, 2020, 47(5)] Research progress of imaging technology based on terahertz quantum well photodetector
Author Affiliations

First published at:Jul 03, 2020
Opto-Electronic Research Reviews Vol. 04, Issue 02, pp. e202005001 (2020) DOI:10.12086/oee.2020.190667
Abstract
References
[1] Abbott D, Zhang X C. Special issue on T-ray imaging, sensing, and retection[J]. Proceedings of the IEEE, 2007, 95(8): 1509–1513.
[2] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716–1718.
[3] Shi S C, Paine S, Yao Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica[J]. Nature Astronomy, 2016, 1: 0001.
[4] Luukanen A, Appleby R, Kemp M, et al. Millimeter-wave and terahertz imaging in security applications[M]//Peiponen K E, Zeitler A, Kuwata-Gonokami M. Terahertz Spectroscopy and Imaging. Berlin, Heidelberg: Springer, 2012: 491–520.
[5] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810–824.
[6] Zhou Z T, Zhou T, Zhang S Q, et al. Multicolor T-ray imaging using multispectral metamaterials[J]. Advanced Science, 2018, 5(7): 1700982.
[7] Abraham E, Younus A, Delagnes J C, et al. Non-invasive investigation of art paintings by terahertz imaging[J]. Applied Physics A, 2010, 100(3): 585–590.
[8] Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 2004, 84(20): 4068–4070.
[9] Guo X G, Tan Z Y, Cao J C, et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94(20): 201101.
[10] Guo X G, Cao J C, Zhang R, et al. Recent progress in terahertz quantum-well photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500508.
[11] Guo X G, Gu L L, Fu Z L, et al. Research on terahertz quantum-well photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092302.
郭旭光, 顾亮亮, 符张龙, 等. 太赫兹量子阱探测器研究[J]. 激光与光电子学进展, 2015, 52(9): 092302.
[12] Zhang S, Wang T M, Hao M R, et al. Terahertz quantum-well photodetectors: design, performance, and improvements[J]. Journal of Applied Physics, 2013, 114(19): 194507.
[13] Shao D X, Guo X G, Zhang R, et al, Influence of many-body effect on terahertz quantum well photodetectors[J]. Acta Optica
Sinica, 2017, 37(10): 1004001.
邵棣祥, 郭旭光, 张戎, 等. 多体效应对太赫兹量子阱探测器的影响[J]. 光学学报, 2017, 37(10): 1004001.
[14] Zhang Y M, Chen H B, Li Z F, et al. The optical coupling improvement of THz quantum well infrared photodetectors based on the plasmonic induced near-field effect[J]. Physica B: Condensed Matter, 2010, 405(2): 552–554.
[15] Zhang R, Guo X G, Song C Y, et al. Metal-grating-coupled terahertz quantum-well photodetectors[J]. IEEE Electron Device Letters, 2011, 32(5): 659–661.
[16] Zhang R, Guo X G, Cao J C. Coupling efficiency of lamellar gratings for terahertz quantum-well photodetectors[J]. Journal of the Korean Physical Society, 2012, 60(8): 1233–1237.
[17] Zhang R, Guo X G, Cao J C, et al. Asymmetric Fabry-Perot oscillations in metal grating-coupled terahertz quantum well photodetectors[J]. IEEE Journal of Quantum Electronics, 2012, 48(9): 1214–1219.
[18] Zhang R, Fu Z L, Gu L L, et al. Terahertz quantum well photodetectors with reflection-grating couplers[J]. Applied Physics Letters, 2014, 105(23): 231123.
[19] Zhang R, Shao D X, Fu Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 3800407.
[20] Li L J, Bai P, Zhang Y H, et al. Optical field simulation of edge coupled terahertz quantum well photodetectors[J]. AIP Advances, 2018, 8(3): 035214.
[21] Zhang Z Z, Fu Z L, Guo X G, et al. 4.3 THz quantum-well photodetectors with high detection sensitivity[J]. Chinese Physics B, 2018, 27(3): 030701.
[22] Shao D X, Zhang R, Fu Z L, et al. High responsivity random metal grating couplers for terahertz quantum well photodetectors[J]. Semiconductor Science and Technology, 2019, 34(7): 075029.
[23] Palaferri D, Todorov Y, Chen Y N, et al. Patch antenna terahertz photodetectors[J]. Applied Physics Letters, 2015, 106: 161102.
[24] Li H, Wan W J, Tan Z Y, et al. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors[J]. Scientific Reports, 2017, 7(1): 3452.
[25] Tan Z Y, Li H, Wan W J, et al. Direct detection of a fast modulated terahertz light with a spectrally matched quantum-well photodetector[J]. Electronics Letters, 2017, 53(2): 91–93.
[26] Zhang Z Z, Li H, Cao J C. Ultrafast terahertz detectors[J]. Acta Physica Sinica, 2018, 67(9): 090702.
张真真, 黎华, 曹俊诚. 高速太赫兹探测器[J]. 物理学报, 2018, 67(9): 090702.
[27] Luo H, Liu H C, Song C Y, et al. Background-limited terahertz quantum-well photodetector[J]. Applied Physics Letters, 2005, 86(23): 231103.
[28] Jia J Y, Gao J H, Hao M R, et al. Dark current mechanism of terahertz quantum-well photodetectors[J]. Journal of Applied Physics, 2014, 116(15): 154501.
[29] Jia J Y, Wang T M, Zhang Y H, et al. High-temperature photon-noise-limited performance terahertz quantum-well photodetectors[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 715–724.
[30] Wang H X, Fu Z L, Shao D X, et al. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well[J]. Applied Physics Letters, 2018, 113(17): 171107.
[31] Cao J C, Chen Y L, Liu H C. Effect of optical phonons on the spectral shape of terahertz quantum-well photodetectors[J]. Superlattices and Microstructures, 2006, 40(2): 119–124.
[32] Xiong F, Guo X G, Cao J C. Simulation of photocurrents of terahertz quantum-well photodetectors[J]. Chinese Physics Letters, 2008, 25(5): 1895–1897.
[33] Guo X G, Zhang R, Liu H C, et al. Photocurrent spectra of heavily doped terahertz quantum well photodetectors[J]. Applied Physics Letters, 2010, 97(2): 021114.
[34] Gu L L, Zhang R, Tan Z Y, et al. Terahertz quantum well photo-detectors: grating versus 45° facet coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(16): 165101.
[35] Gu L L, Guo X G, Fu Z L, et al. Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors[J]. Applied Physics Letters, 2015, 106(11): 111107.
[36] Yu C H, Zhang B, Lu W, et al. Strong enhancement of terahertz response in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2010, 97(2): 022102.
[37] Yu C H, Zhang B, Luo X D, et al. Wide tunability and electron transfer in GaAs/AlGaAs quantum well photodetector by magnetic field[J]. Applied Physics Letters, 2017, 110(19): 192102.
[38] Yu C H, Li L, Xu T F, et al. Strong terahertz response in quantum well photodetector based on intradonor transition by magnetic field[J]. AIP Advances, 2018, 8(12): 125014.
[39] Zhang G X, Guo X G, Wang H X, et al. Bias-polarity-dependent photocurrent spectra of terahertz stepped-quantum-well photodetectors[J]. Physical Review Applied, 2019, 12(2): 024035.
[40] Zhou T, Zhang R, Guo X G, et al. Terahertz imaging with quantum-well photodetectors[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1109–1111.
[41] Tan Z Y, Zhou T, Cao J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344–1346.
[42] Tan Z Y, Zhou T, Fu Z L, et al. Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector[J]. Electronics Letters, 2014, 50(5): 389–391.
[43] Qiu F C, Tan Z Y, Wang C, et al. Terahertz optical scanning imaging of motionless polyurethane insulation materials[J]. Electronics Letters, 2019, 55(19): 1053–1055.
[44] Zhou T, Tan Z Y, Gu L, et al. Three-dimensional imaging with terahertz quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2015, 51(1): 85–86.
[45] Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector[J]. Optics Communications, 2018, 427: 170–174.
[46] Qiu F C, Fu Y Z, Wang C, et al. Fast terahertz reflective confocal scanning imaging with a quantum cascade laser and a photodetector[J]. Applied Physics B, 2019, 125(5): 86.
[47] Fu Z L, Gu L L, Guo X G, et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016, 6: 25383.
[48] Fu Z L, Shao D X, Zhang Z Z, et al. Terahertz frequency up-conversion imaging devices[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 147–151.
符张龙, 邵棣祥, 张真真, 等. 太赫兹频率上转换成像器件研究[J]. 深圳大学学报理工版, 2019, 36(2): 147–151.
Keywords:
Funds:
National Key R&D Program of China (2017YFF0106302), National Natural Science Foundation of China (61927813, 61975225, 61875220, 61775229), the Fundamental Frontier Scientific Research Program of the Chinese Academy of Sciences (ZDBS-LY-JSC009), and Shanghai Sailing Program (17YF1429900)
Export Citations as:
For
Get Citation:
Fu Zhanglong, Li Ruizhi, Li Hongyi, et al. Research progress of imaging technology based on terahertz quantum well photodetector[J]. Opto-Electronic Engineering, 2020, 47(5): 190667.
Next: [Opto-Electron Eng, 2020, 47(5)] THz wave computational ghost imaging: principles and outlooks