As an important composition of terahertz (THz) technology, THz pulsed focal-plane imaging has been paid widely attention since it was invented. Until now, researchers have introduced all kinds of methods to enhance the performance of this imaging technique. Simultaneously, this imaging technique has been tried to apply into various industrial and fundamental research fields. In this paper, recent technique improvements and application researches for THz pulsed focal-plane imaging are reviewed, including the spatial resolution enhancement, signal-to-noise ratio improvement, information acquiring ability as well as applications of this imaging technique in spectroscopic identification inspections, function demonstrations of meta-surface devices, measurements of THz special beams, observations of THz surface electromagnetic waves, and so on. The aim of this paper is to push the technique innovation and application exploration of THz pulsed focal-plane imaging.
Home > Journal Home > Opto-Electronic Research Reviews
Opto-Electronic Research Reviews
ISSN:
CN:
quarterly
CN:
quarterly
[Opto-Electron Eng, 2020, 47(5)] Advancement and application of terahertz pulsed focal-plane imaging technique
Author Affiliations

First published at:Jul 03, 2020
Opto-Electronic Research Reviews Vol. 04, Issue 02, pp. e202005003 (2020) DOI:10.12086/oee.2020.190413
Abstract
References
[1] Liu H B, Chen Y Q, Bastiaans G J, et al. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy[J]. Optics Express, 2006, 14(1): 415–423.
[2] Hui X N, Zheng S L, Chen Y L, et al. Multiplexed millimeter wave communication with dual Orbital Angular Momentum (OAM) mode antennas[J]. Scientific Reports, 2015, 5(1): 10148.
[3] Ji Y B, Park C H, Kim H, et al. Feasibility of terahertz reflectometry for discrimination of human early gastric can-cers[J]. Biomedical Optics Express, 2015, 6(4): 1398–1406.
[4] Ye H, Xi M R, Cao H Y, et al. Applications of terahertz technology in medical science and research progress[J]. Opto-Electronic Engineering, 2018, 45(5): 170528.
叶麾, 郄明蓉, 曹寒雨, 等. 太赫兹技术在医学科学中的应用及研究进展[J]. 光电工程, 2018, 45(5): 170528.
[5] Zhong H, Xu J Z, Xie X, et al. Nondestructive defect identification with terahertz time-of-flight tomography[J]. IEEE Sensors Journal, 2005, 5(2): 203–208.
[6] Hebling J, Hoffmann M C, Hwang H Y, et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by te-rahertz pump–terahertz probe measurements[J]. Physical Review B, 2010, 81(3): 035201.
[7] Planken P C M, Bakker H J. Towards time-resolved THz imaging[J]. Applied physics A, 2004, 78(4): 465–469.
[8] Mittleman D M, Hunsche S, Boivin L, et al. T-ray tomography[J]. Optics Letters, 1997, 22(12): 904–906.
[9] Ferguson B, Wang S H, Gray D, et al. T-ray computed tomography[J]. Optics Letters, 2002, 27(15): 1312–1314.
[10] Cocker T L, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 2013, 7(8): 620–625.
[11] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.
[12] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716–1718.
[13] Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams[J]. Applied Physics Letters, 1996, 69(8): 1026–1028.
[14] Wang X K. Studies and improvement of key techniques in THz real-time imaging[D]. Harbin: Harbin Institute of Technology, 2011: 48–50.
王新柯. 太赫兹实时成像中关键技术的研究与改进[D]. 哈尔滨: 哈尔滨工业大学, 2011: 48–50.
[15] Jiang Z P, Xu X G, Zhang X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982–2987.
[16] Yasui T, Sawanaka K I, Ihara A, et al. Real-time terahertz color scanner for moving objects[J]. Optics Express, 2008, 16(2): 1208–1221.
[17] Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683–4687.
[18] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communica-tions, 2010, 283(23): 4626–4632.
[19] Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387–2393.
[20] Zhang R X, Cui Y, Sun W F, et al. Polarization information for terahertz imaging[J]. Applied Optics, 2008, 47(34): 6422–6427.
[21] Blanchard F, Doi A, Tanaka T, et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011, 19(9): 8277–8284.
[22] Wang X K, Wang S, Xie Z W, et al. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization[J]. Optics Express, 2014, 22(20): 24622–24634.
[23] He J W, Wang X K, Hu D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17): 20230–20239.
[24] Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spec-troscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130–9141.
[25] Schirmer M, Fujio M, Minami M, et al. Biomedical applications of a real-time terahertz color scanner[J]. Biomedical Optics Ex-press, 2010, 1(2): 354–366.
[26] Usami M, Yamashita M, Fukushima K, et al. Terahertz wide-band spectroscopic imaging based on two-dimensional elec-tro-optic sampling technique[J]. Applied Physics Letters, 2005, 86(14): 141109.
[27] Wu Q, Werley C A, Lin K H, et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Op-tics Express, 2009, 17(11): 9219–9225.
[28] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.
[29] Hu D, Wang X K, Feng S F, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186–191.
[30] Wang S, Wang X K, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 2015, 23(20): 26434–26441.
[31] He J W, Wang S, Xie Z W, et al. Abruptly autofocusing terahertz waves with meta-hologram[J]. Optics Letters, 2016, 41(12): 2787–2790.
[32] Wang B, Quan B G, He J W, et al. Wavelength de-multiplexing metasurface hologram[J]. Scientific Reports, 2016, 6(1): 35657.
[33] Ge S J, Chen P, Shen Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Optics Express, 2017, 25(11): 12349–12356.
[34] Jia M, Wang Z, Li H T, et al. Ef?cient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 2019, 8: 16.
[35] Khonina S N, Kazanskiy N L, Volotovsky S G. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system[J]. Journal of Modern Optics, 2011, 58(9): 748–760.
[36] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499–1501.
[37] Arlt J, Padgett M J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam[J]. Optics Letters, 2000, 25(4): 191–193.
[38] Wang X K, Shi J, Sun W F, et al. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations[J]. Optics Express, 2016, 24(7): 7178–7190.
[39] Wu Z, Wang X K, Sun W F, et al. Vector characterization of zero-order terahertz Bessel beams with linear and circular polarizations[J]. Scientific Reports, 2017, 7(1): 13929.
[40] Martelli P, Tacca M, Gatto A, et al. Gouy phase shift in nondiffracting Bessel beams[J]. Optics Express, 2010, 18(7): 7108–7120.
[41] Li H T, Wang X K, Wang S, et al. Vector measurement and performance tuning of a terahertz bottle beam[J]. Scientific Reports, 2018, 8(1): 13177.
[42] Bitman A, Moshe I, Zalevsky Z, et al. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams[J]. Optics Letters, 2012, 37(19): 4164–4166.
[43] Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 2015, 6(1): 8486.
[44] Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007: 21–37.
[45] Zhu W Q, Nahata A. Electric field vector characterization of terahertz surface plasmons[J]. Optics Express, 2007, 15(9): 5616–5624.
[46] Adam A J L, Brok J M, Seo M A, et al. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures[J]. Optics Express, 2008, 16(10): 7407–7417.
[47] Wang X K, Wang S, Sun W F, et al. Visualization of terahertz surface waves propagation on metal foils[J]. Scientific Reports, 2016, 6(1): 18768.
[48] Li H T, Wang X K, Wang S, et al. Realization and characterization of terahertz surface plasmon light capsules[J]. Applied Physics Letters, 2019, 114(9): 091110.
[49] Yasuda T, Kawada Y, Toyoda H, et al. Terahertz movies of internal transmission images[J]. Optics Express, 2007, 15(23): 15583–15588.
[50] Zhang L L, Karpowicz N, Zhang C L, et al. Real-time nonde-structive imaging with THz waves[J]. Optics Communications, 2008, 281(6): 1473–1475.
[51] Abraham E, Cahyadi H, Brossard M, et al. Development of a wavefront sensor for terahertz pulses[J]. Optics Express, 2016, 24(5): 5203–5211.
[52] Wang X K, Xiong W, Sun W F, et al. Coaxial waveguide mode reconstruction and analysis with THz digital holography[J]. Optics Express, 2012, 20(7): 7706–7715.
[53] Wang X K, Sun W F, Cui Y, et al. Complete presentation of the Gouy phase shift with the THz digital holography[J]. Optics Express, 2013, 21(2): 2337–2346.
[54] Ushakov A, Chizhov P, Bukin V, et al. Broadband in-line terahertz 2D imaging: comparative study with time-of-flight, cross-correlation, and Fourier transform data processing[J]. Journal of the Optical Society of America B, 2018, 35(5): 1159–1164.
[55] Siddique M, Zhang W, Li Z, et al. Theoretical design of te-rahertz-wave parametric oscillator using LiNbO3 crystal[J]. Opto-Electronic Engineering, 2006, 33(3): 114–118.
西迪科, 张维, 李卓, 等. 用参量法通过LiNbO3晶体产生太赫兹的理论设计[J]. 光电工程, 2006, 33(3): 114–118.
[56] Behnken B N, Karunasiri G, Chamberlin D R, et al. Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera[J]. Optics Letters, 2008, 33(5): 440–442.
[57] Boppel S, Lisauskas A, Max A, et al. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Optics Letters, 2012, 37(4): 536–538.
[58] Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228–3230.
[59] Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236–17245.
[60] Li B, Wang D Y, Zhou X, et al. A continuous-wave terahertz 3-D computed tomography using a pyroelectric array detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 21–25.
李斌, 王大勇, 周逊, 等. 基于面阵式探测器连续太赫兹波三维层析成像[J]. 太赫兹科学与电子信息学报, 2017, 15(1): 21–25.
[61] Luo M C, Sun J D, Zhang Z P, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors[J]. Infrared and Laser Engineering, 2018, 47(3): 0320001.
罗木昌, 孙建东, 张志鹏, 等. 基于AlGaN/GaN场效应晶体管的太赫兹焦平面成像传感器[J]. 红外与激光工程, 2018, 47(3): 0320001.
Keywords:
Funds:
National Natural Science Foundation of China (11474206, 11404224, 11774243, 11774246)
Export Citations as:
For
Get Citation:
Wang Xinke, Zhang Yan. Advancement and application of terahertz pulsed focal-plane imaging technique[J]. Opto-Electronic Engineering, 2020, 47(5): 190413.
Previous: [Opto-Electron Eng, 2020, 47(5)] THz wave computational ghost imaging: principles and outlooks