Terahertz (THz) imaging technology has shown great advantages and potential applications in the fields of biomedicine, security, and aerospace, due to its low energy, high transmittance, wide bandwidth, and unique analysis abilities; while low spatial resolution restricts its further applications. Recently, a high-resolution, high-throughput, and broad-bandwidth THz imaging method has been proposed based on the terajet effect produced by dielectric structures with appropriate refractive index. The terajet beam can break through the restriction of the diffraction limit on the spatial resolution of the microscopic system without losing the energy and spectral bandwidth of the THz field. In this paper, firstly, a white-light nanoscopy based on photonic nanojet produced by microspheres is introduced, then the THz microscopy based on terajet effect produced by mesoscopic dielectric structures is reviewed. Finally, the prospect of THz high resolution imaging technology based on terajet effect is prospected.
Home > Journal Home > Opto-Electronic Research Reviews
Opto-Electronic Research Reviews
ISSN:
CN:
quarterly
CN:
quarterly
[Opto-Electron Eng, 2020, 47(5)] Research advances of high-resolution THz imaging based on terajet effect
Author Affiliations

First published at:Jul 03, 2020
Opto-Electronic Research Reviews Vol. 04, Issue 02, pp. e202005005 (2020) DOI:10.12086/oee.2020.190590
Abstract
References
[1] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417–9431.
[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.
[3] Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8–9): 976–1019.
[4] Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874–27885.
[5] Zinov’ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492–495.
[6] Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834–1841.
[7] Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180.
[8] Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165–173.
[9] Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834–6839.
[10] Hunsche S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1997, 150(1–6): 22–26.
[11] Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591–593.
[12] Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608–614.
[13] Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496–3498.
[14] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009–3011.
[15] van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558–1560.
[16] Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549–552.
[17] Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676–2680.
[18] Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058–2060.
[19] Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115–120.
[20] Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169–171.
[21] Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079–4083.
杨玉平, 施宇蕾, 严伟,等.一种新型THz显微探测技术[J],物理学报, 2005, 54(9): 4079–4083.
[22] Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880.
[23] Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120.
[24] Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017.
[25] Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105.
[26] Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21–24.
[27] Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218.
[28] Pacheco-Pe?a V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102.
[29] Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105.
[30] Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102.
[31] Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128.
[32] Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710.
[33] Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104.
[34] Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super‐resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876.
[35] Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101.
[36] Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809–1816.
[37] Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479–16486.
[38] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862–4870.
[39] Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214–1220.
[40] Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120–4123.
[41] Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3.
[42] Pacheco-Pe?a V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245–248.
[43] Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102.
[44] Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105.
[45] Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106.
[46] Minin I V, Minin O V, Pacheco-Pe?a V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102.
[47] Minin I V, Minin O V, Pacheco-Pe?a V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329–2332.
[48] Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546–552.
[49] Minin I V, Minin O V. Terajet from 3D anisotropic artificial metamaterial[C]//Proceedings of 2016 13th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering, 2016: 142–144.
[50] Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326.
[51] Cruz A L S, Cordeiro C M B, Franco M A R. Enhanced Terahertz transmission through 3D non-spherical terajets[J]. Proceedings of SPIE, 2015, 9634: 963412.
[52] Niu L T, Wang K J, Yang Y Q, et al. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging[J]. IEEE Photonics Journal, 2019, 11(1): 5900212, doi: 10.1109/JPHOT.2018.2887139.
[53] Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471–475, doi: 10.1109/TTHz.2019.2926630.
[54] Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1–2.
[55] Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606.
[56] Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703.
Keywords:
Funds:
National Natural Science Foundation of China (11574408), the National Key R&D Program of China (2017YFB0405400), the Young-talent Plan of State Affairs Commission (2016-3-02), and the Undergraduate Innovative Test Program funded by Minzu University of China (URTP2019110002)
Export Citations as:
For
Get Citation:
Ma Xiaoming, Jiang Zaichao, Qu Qingshan, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electronic Engineering, 2020, 47(5): 190590.
Next: [Opto-Electron Eng, 2020, 47(5)] Applications of terahertz imaging technology in tumor detection