Ma J X, Zeng D Z, Yang Y T, Pan C, Zhang L et al. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2, 180022 (2019). doi: 10.29026/oea.2019.180022
Citation: Ma J X, Zeng D Z, Yang Y T, Pan C, Zhang L et al. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2, 180022 (2019). doi: 10.29026/oea.2019.180022

Review Open Access

A review of crosstalk research for plasmonic waveguides

More Information
  • Plasmonic waveguides, as a competitive candidate, have been widely studied in rapid developing photonic integrated circuits (PICs) and optical interconnection fields. However, crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice. Actually, crosstalk dominates the ultimate integration density of the planar photonic circuits. This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides. Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized. Furthermore, four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit. One means of crosstalk suppression is changing the placement of waveguides, which could maintain the transmission characteristics of the original waveguide. The other means is inserting medium, which has the advantage of occupying smaller space compared to the first method. Consequently, to suppress crosstalk between plasmonic waveguides, one should choose suitable approach.
  • 加载中
  • [1] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics 4, 83-91 (2010). doi: 10.1038/nphoton.2009.282

    CrossRef Google Scholar

    [2] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189-193 (2006). doi: 10.1126/science.1114849

    CrossRef Google Scholar

    [3] Dokania R K, Apsel A B. Analysis of challenges for on-chip optical interconnects. In Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275-280 (ACM, 2009); http://doi.org/10.1145/1531542.1531607. 10.1145/1531542.1531607

    Google Scholar

    [4] Miller D A B. Device requirements for optical interconnects to silicon chips. Proc IEEE 97, 1166-1185 (2009). doi: 10.1109/JPROC.2009.2014298

    CrossRef Google Scholar

    [5] Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17, 16505-16517 (2009). doi: 10.1364/OE.17.016505

    CrossRef Google Scholar

    [6] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229-232 (2003). doi: 10.1038/nmat852

    CrossRef Google Scholar

    [7] Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13, 977-984 (2005). doi: 10.1364/OPEX.13.000977

    CrossRef Google Scholar

    [8] Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 1, 484-588 (2009). doi: 10.1364/AOP.1.000484

    CrossRef Google Scholar

    [9] Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A et al. Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88, 094104 (2006). doi: 10.1063/1.2180448

    CrossRef Google Scholar

    [10] Chen Z, Holmgaard T, Bozhevolnyi S I, Krasavin A V, Zayats A V et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett 34, 310-312 (2009). doi: 10.1364/OL.34.000310

    CrossRef Google Scholar

    [11] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508-511 (2006). doi: 10.1038/nature04594

    CrossRef Google Scholar

    [12] Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y, Ebbesen T W. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett 7, 880-884 (2007). doi: 10.1021/nl070209b

    CrossRef Google Scholar

    [13] Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87, 061106 (2005). doi: 10.1063/1.1991990

    CrossRef Google Scholar

    [14] Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 16, 5252-5260 (2008). doi: 10.1364/OE.16.005252

    CrossRef Google Scholar

    [15] Gramotnev D K, Vernon K C, Pile D F P. Directional coupler using gap plasmon waveguides. Appl Phys B 93, 99-106 (2008). doi: 10.1007/s00340-008-3206-0

    CrossRef Google Scholar

    [16] Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Express 13, 256-266 (2005). doi: 10.1364/OPEX.13.000256

    CrossRef Google Scholar

    [17] Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30, 3359-3361 (2005). doi: 10.1364/OL.30.003359

    CrossRef Google Scholar

    [18] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2, 496-500 (2008). doi: 10.1038/nphoton.2008.131

    CrossRef Google Scholar

    [19] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17, 16646-16653 (2009). doi: 10.1364/OE.17.016646

    CrossRef Google Scholar

    [20] Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol Lett 21, 362-364 (2009). doi: 10.1109/LPT.2008.2011995

    CrossRef Google Scholar

    [21] Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21, 2442-2446 (2004). doi: 10.1364/JOSAA.21.002442

    CrossRef Google Scholar

    [22] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Opt Express 13, 6645-6650 (2005). doi: 10.1364/OPEX.13.006645

    CrossRef Google Scholar

    [23] Veronis G, Fan S H. Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express 16, 2129-2140 (2008). doi: 10.1364/OE.16.002129

    CrossRef Google Scholar

    [24] Bian Y S, Zheng Z, Zhao X, Zhu J S, Zhou T. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express 17, 21320-21325 (2009). doi: 10.1364/OE.17.021320

    CrossRef Google Scholar

    [25] Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt Commun 284, 480-484 (2011). doi: 10.1016/j.optcom.2010.08.054

    CrossRef Google Scholar

    [26] Xiao J, Liu J S, Zheng Z, Bian Y S, Wang G J et al. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Opt Commun 285, 3604-3607 (2012). doi: 10.1016/j.optcom.2012.04.035

    CrossRef Google Scholar

    [27] Devaux E, Bozhevolnyi S I, Ebbesen T W, Volkov V S, Zenin V A et al. Directional coupling in channel plasmon-polariton waveguides. Opt Express 20, 6124-6134 (2012). doi: 10.1364/OE.20.006124

    CrossRef Google Scholar

    [28] Han Z H, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76, 016402 (2013). doi: 10.1088/0034-4885/76/1/016402

    CrossRef Google Scholar

    [29] Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt Express 21, 29544-29557 (2013). doi: 10.1364/OE.21.029544

    CrossRef Google Scholar

    [30] Shruti R K S, Bhattacharyya R. Coupling and crosstalk characteristics of hybrid silicon plasmonic waveguides. Appl Phys B 116, 241-248 (2014). doi: 10.1007/s00340-013-5682-0

    CrossRef Google Scholar

    [31] Chen L, Zhang T, Hong W, Zhou X, Li X. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Journal of Lightwave Technology 32, 4199-4203 (2014). doi: 10.1109/JLT.2014.2350487

    CrossRef Google Scholar

    [32] Ma A N, Li G J, Li Y E. Crosstalk and coupling analysis of wedge plasmon polariton waveguides by the improved coupled mode theory. J Nanoelectron Optoelectron 10, 828-832 (2015). doi: 10.1166/jno.2015.1846

    CrossRef Google Scholar

    [33] Kuznetsov E V, Merzlikin A M, Zyablovsky A A, Vinogradov A P, Lisyansky A A. Suppression of crosstalk in coupled plasmonic waveguides. arXiv: 1611.08214 [physics.optics] (2016).

    Google Scholar

    [34] He X Q, Ning T G, Lu S H, Zheng J J, Li J et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express 26, 10109-10118 (2018). doi: 10.1364/OE.26.010109

    CrossRef Google Scholar

    [35] Holmgaard T, Chen Z, Bozhevolnyi S I, Markey L, Dereux A. Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightw Technol 27, 5521-5528 (2009). doi: 10.1109/JLT.2009.2031654

    CrossRef Google Scholar

    [36] Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express 19, 8379-8393 (2011). doi: 10.1364/OE.19.008379

    CrossRef Google Scholar

    [37] Bian Y S, Gong Q H. Optical performance of one-dimensional hybrid metal-insulator-metal structures at telecom wavelength. Opt Commun 308, 30-35 (2013). doi: 10.1016/j.optcom.2013.06.034

    CrossRef Google Scholar

    [38] Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. J Lightw Technol 31, 1973-1979 (2013). doi: 10.1109/JLT.2013.2263217

    CrossRef Google Scholar

    [39] Hao R, Cassan E, Xu Y, Qiu M, Wei X C et al. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron 19, 4601809 (2013). doi: 10.1109/JSTQE.2013.2237886

    CrossRef Google Scholar

    [40] Hao R, Peng X L, Chen H S, Yin W Y, Li E P. Plasmonic transmission lines with zero crosstalk. In Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021-1023 (IEEE, 2016); http://doi.org/10.1109/APEMC.2016.7522934. 10.1109/APEMC.2016.7522934

    Google Scholar

    [41] Dolatabady A, Granpayeh N. Plasmonic directional couplers based on multi-slit waveguides. Plasmonics 12, 597-604 (2017). doi: 10.1007/s11468-016-0303-5

    CrossRef Google Scholar

    [42] Nakayama K, Tonooka Y, Ota M, Ishii Y, Fukuda M. Passive plasmonic demultiplexers using multimode interference. J Lightw Technol 36, 1979-1984 (2018). doi: 10.1109/JLT.2018.2797281

    CrossRef Google Scholar

    [43] Joshi S, Nehra V, Kaushik B K. Modeling and simulation analysis of graphene integrated silicon waveguides. Proc SPIE 10345, 1034518 (2017). doi: 10.1117/12.2274708

    CrossRef Google Scholar

    [44] Kwon M S, Kim Y. Theoretical investigation of intersections of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics J 8, 2701510 (2016). doi: 10.1109/JPHOT.2016.2627639

    CrossRef Google Scholar

    [45] Liu J, Xiao J, Zhu J, Liu L, Zhou T et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. Journal of Lightwave Technology 31, 1973-1979 (2013). doi: 10.1109/JLT.2013.2263217

    CrossRef Google Scholar

    [46] Zhou W, Huang X G. Long-range air-hole assisted subwavelength waveguides. Nanotechnology 24, 235203 (2013). doi: 10.1088/0957-4484/24/23/235203

    CrossRef Google Scholar

    [47] Jiang W F, Cheng F Y, Xu J, Wan H D. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B 35, 2532-2540 (2018). doi: 10.1364/JOSAB.35.002532

    CrossRef Google Scholar

    [48] Cui J, Sun Y, Wang L, Ma P J. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration. Optik 127, 152-155 (2016). doi: 10.1016/j.ijleo.2015.10.040

    CrossRef Google Scholar

    [49] Mrejen M, Suchowski H, Hatakeyama T, Wu C H, Feng L et al. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat Commun 6, 7565 (2015). doi: 10.1038/ncomms8565

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint