Citation: | Ma J X, Zeng D Z, Yang Y T, Pan C, Zhang L et al. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2, 180022 (2019). doi: 10.29026/oea.2019.180022 |
[1] | Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics 4, 83-91 (2010). doi: 10.1038/nphoton.2009.282 |
[2] | Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189-193 (2006). doi: 10.1126/science.1114849 |
[3] |
Dokania R K, Apsel A B. Analysis of challenges for on-chip optical interconnects. In Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275-280 (ACM, 2009); http://doi.org/10.1145/1531542.1531607.
|
[4] | Miller D A B. Device requirements for optical interconnects to silicon chips. Proc IEEE 97, 1166-1185 (2009). doi: 10.1109/JPROC.2009.2014298 |
[5] | Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17, 16505-16517 (2009). doi: 10.1364/OE.17.016505 |
[6] | Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229-232 (2003). doi: 10.1038/nmat852 |
[7] | Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13, 977-984 (2005). doi: 10.1364/OPEX.13.000977 |
[8] | Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 1, 484-588 (2009). doi: 10.1364/AOP.1.000484 |
[9] | Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A et al. Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88, 094104 (2006). doi: 10.1063/1.2180448 |
[10] | Chen Z, Holmgaard T, Bozhevolnyi S I, Krasavin A V, Zayats A V et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett 34, 310-312 (2009). doi: 10.1364/OL.34.000310 |
[11] | Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508-511 (2006). doi: 10.1038/nature04594 |
[12] | Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y, Ebbesen T W. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett 7, 880-884 (2007). doi: 10.1021/nl070209b |
[13] | Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87, 061106 (2005). doi: 10.1063/1.1991990 |
[14] | Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 16, 5252-5260 (2008). doi: 10.1364/OE.16.005252 |
[15] | Gramotnev D K, Vernon K C, Pile D F P. Directional coupler using gap plasmon waveguides. Appl Phys B 93, 99-106 (2008). doi: 10.1007/s00340-008-3206-0 |
[16] | Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Express 13, 256-266 (2005). doi: 10.1364/OPEX.13.000256 |
[17] | Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30, 3359-3361 (2005). doi: 10.1364/OL.30.003359 |
[18] | Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2, 496-500 (2008). doi: 10.1038/nphoton.2008.131 |
[19] | Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17, 16646-16653 (2009). doi: 10.1364/OE.17.016646 |
[20] | Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol Lett 21, 362-364 (2009). doi: 10.1109/LPT.2008.2011995 |
[21] | Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21, 2442-2446 (2004). doi: 10.1364/JOSAA.21.002442 |
[22] | Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Opt Express 13, 6645-6650 (2005). doi: 10.1364/OPEX.13.006645 |
[23] | Veronis G, Fan S H. Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express 16, 2129-2140 (2008). doi: 10.1364/OE.16.002129 |
[24] | Bian Y S, Zheng Z, Zhao X, Zhu J S, Zhou T. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express 17, 21320-21325 (2009). doi: 10.1364/OE.17.021320 |
[25] | Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt Commun 284, 480-484 (2011). doi: 10.1016/j.optcom.2010.08.054 |
[26] | Xiao J, Liu J S, Zheng Z, Bian Y S, Wang G J et al. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Opt Commun 285, 3604-3607 (2012). doi: 10.1016/j.optcom.2012.04.035 |
[27] | Devaux E, Bozhevolnyi S I, Ebbesen T W, Volkov V S, Zenin V A et al. Directional coupling in channel plasmon-polariton waveguides. Opt Express 20, 6124-6134 (2012). doi: 10.1364/OE.20.006124 |
[28] | Han Z H, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76, 016402 (2013). doi: 10.1088/0034-4885/76/1/016402 |
[29] | Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt Express 21, 29544-29557 (2013). doi: 10.1364/OE.21.029544 |
[30] | Shruti R K S, Bhattacharyya R. Coupling and crosstalk characteristics of hybrid silicon plasmonic waveguides. Appl Phys B 116, 241-248 (2014). doi: 10.1007/s00340-013-5682-0 |
[31] | Chen L, Zhang T, Hong W, Zhou X, Li X. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Journal of Lightwave Technology 32, 4199-4203 (2014). doi: 10.1109/JLT.2014.2350487 |
[32] | Ma A N, Li G J, Li Y E. Crosstalk and coupling analysis of wedge plasmon polariton waveguides by the improved coupled mode theory. J Nanoelectron Optoelectron 10, 828-832 (2015). doi: 10.1166/jno.2015.1846 |
[33] | Kuznetsov E V, Merzlikin A M, Zyablovsky A A, Vinogradov A P, Lisyansky A A. Suppression of crosstalk in coupled plasmonic waveguides. arXiv: 1611.08214 [physics.optics] (2016). |
[34] | He X Q, Ning T G, Lu S H, Zheng J J, Li J et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express 26, 10109-10118 (2018). doi: 10.1364/OE.26.010109 |
[35] | Holmgaard T, Chen Z, Bozhevolnyi S I, Markey L, Dereux A. Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightw Technol 27, 5521-5528 (2009). doi: 10.1109/JLT.2009.2031654 |
[36] | Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express 19, 8379-8393 (2011). doi: 10.1364/OE.19.008379 |
[37] | Bian Y S, Gong Q H. Optical performance of one-dimensional hybrid metal-insulator-metal structures at telecom wavelength. Opt Commun 308, 30-35 (2013). doi: 10.1016/j.optcom.2013.06.034 |
[38] | Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. J Lightw Technol 31, 1973-1979 (2013). doi: 10.1109/JLT.2013.2263217 |
[39] | Hao R, Cassan E, Xu Y, Qiu M, Wei X C et al. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron 19, 4601809 (2013). doi: 10.1109/JSTQE.2013.2237886 |
[40] |
Hao R, Peng X L, Chen H S, Yin W Y, Li E P. Plasmonic transmission lines with zero crosstalk. In Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021-1023 (IEEE, 2016); http://doi.org/10.1109/APEMC.2016.7522934. |
[41] | Dolatabady A, Granpayeh N. Plasmonic directional couplers based on multi-slit waveguides. Plasmonics 12, 597-604 (2017). doi: 10.1007/s11468-016-0303-5 |
[42] | Nakayama K, Tonooka Y, Ota M, Ishii Y, Fukuda M. Passive plasmonic demultiplexers using multimode interference. J Lightw Technol 36, 1979-1984 (2018). doi: 10.1109/JLT.2018.2797281 |
[43] | Joshi S, Nehra V, Kaushik B K. Modeling and simulation analysis of graphene integrated silicon waveguides. Proc SPIE 10345, 1034518 (2017). doi: 10.1117/12.2274708 |
[44] | Kwon M S, Kim Y. Theoretical investigation of intersections of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics J 8, 2701510 (2016). doi: 10.1109/JPHOT.2016.2627639 |
[45] | Liu J, Xiao J, Zhu J, Liu L, Zhou T et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. Journal of Lightwave Technology 31, 1973-1979 (2013). doi: 10.1109/JLT.2013.2263217 |
[46] | Zhou W, Huang X G. Long-range air-hole assisted subwavelength waveguides. Nanotechnology 24, 235203 (2013). doi: 10.1088/0957-4484/24/23/235203 |
[47] | Jiang W F, Cheng F Y, Xu J, Wan H D. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B 35, 2532-2540 (2018). doi: 10.1364/JOSAB.35.002532 |
[48] | Cui J, Sun Y, Wang L, Ma P J. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration. Optik 127, 152-155 (2016). doi: 10.1016/j.ijleo.2015.10.040 |
[49] | Mrejen M, Suchowski H, Hatakeyama T, Wu C H, Feng L et al. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat Commun 6, 7565 (2015). doi: 10.1038/ncomms8565 |
Four different waveguide schematics ((a), (b), (c), (d)) and the dependences of (e) coupling length Lc and (f) maximum transfer power Pmax on separation distance D 23.
(a) The schematic of two adjacent parallel channel plasmonpolariton waveguides. (b) The crosstalk performance with specific parameters 27.
(a) The 2D and (b) 3D schematic diagrams of two WPP waveguides. Normalized crosstalk power of WPP waveguides under different parameters with wedge height (c) h=0.5 μm and (d) h=1.6 μm 32.
Schematic diagrams of (a) hybrid waveguide and (b) its rotation, (c) distribution of Ey field for rotation hybrid waveguide, (d) coupling length Lc and (e) maximum power transfer Pmax as functions of the separation D, the red solid line and blue dotted line represent the results of the two structures of (a) and (b), respectively 25.
Schematic configuration of the two parallel hybrid silicon plasmonic waveguides (HSPW) (a) without and (b) with metallic strip. The maximum power transfer Pmax versus specific parameters (separation distance D, height h and width w of the metallic strip) (c) without and (d) with metallic strip 30.
(a) The schematics of the surface plasmon waveguide system with the auxiliary waveguide. The distribution of the absolute values of the electric fields at waveguides (b) with and (c) without the auxiliary waveguide 33.