Li L, Xiao L, Wang J H, Wang Q H. Movable electrowetting optofluidic lens for optical axial scanning in microscopy. Opto-Electron Adv 2, 180025 (2019). doi: 10.29026/oea.2019.180025
Citation: Li L, Xiao L, Wang J H, Wang Q H. Movable electrowetting optofluidic lens for optical axial scanning in microscopy. Opto-Electron Adv 2, 180025 (2019). doi: 10.29026/oea.2019.180025

Original Article Open Access

Movable electrowetting optofluidic lens for optical axial scanning in microscopy

More Information
  • Optical axial scanning is essential process to obtain 3D information of biological specimens. To realize optical axial scanning without moving, the tunable lens is a solution. However, the conventional tunable lenses usually induce non-uniform magnification and resolution issues. In this paper, we report a movable electrowetting optofluidic lens. Unlike the conventional tunable lens, our proposed optofluidic lens has two liquid-liquid (L-L) interfaces, which can move in the cell by an external voltage. The object distance and image distance are adjusted by shifting the L-L interface position. Therefore, the proposed lens can realize optical axial scanning with uniform magnification and resolution in microscopy. To prove the concept, we fabricate an optofluidic lens and use it in optical axial scanning. The scanning distance is more than 1 mm with uniform magnification and good imaging quality. Widespread application of such a new adaptive zoom lens is foreseeable.
  • 加载中
  • [1] Murphy D B. Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York, 2001).

    Google Scholar

    [2] Pawley J B. Handbook of Biological Confocal Microscopy (Springer, Boston, MA, 2006).

    Google Scholar

    [3] Martínez-Corral M, Saavedra G. The resolution challenge in 3D optical microscopy. Prog Opt 53, 1-67 (2009).

    Google Scholar

    [4] Sánchez-Ortiga E, Sheppard C J R, Saavedra G, Martínez-Corral M, Doblas A et al. Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector. Opt Lett 37, 1280-1282 (2012).

    Google Scholar

    [5] York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9, 749-754 (2012).

    Google Scholar

    [6] Ahrens M B, Orger M B, Robson D N, Li J M, Keller P J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 9, 413-420 (2013).

    Google Scholar

    [7] Chen C W, Cho M, Huang Y P, Javidi B. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens. Opt Lett 37, 4125-4127 (2012).

    Google Scholar

    [8] Martínez-Corral M, Hsieh P Y, Doblas A, Sánchez-Ortiga E, Saavedra G et al. Fast axial-scanning widefield microscopy with constant magnification and resolution. J Disp Technol 11, 913-920 (2015).

    Google Scholar

    [9] Jabbour J M, Malik B H, Olsovsky C, Cuenca R, Cheng S N et al. Optical axial scanning in confocal microscopy using an electrically tunable lens. Biomed Opt Express 5, 645-652 (2014).

    Google Scholar

    [10] Koukourakis N, Finkeldey M, Stürmer M, Leithold C, Gerhardt N C et al. Axial scanning in confocal microscopy employing adaptive lenses (CAL). Opt Express 22, 6025-6039 (2014).

    Google Scholar

    [11] Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3, 159-163 (2000).

    Google Scholar

    [12] Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85, 1128-1130 (2004).

    Google Scholar

    [13] Cheng C C, Yeh J A. Dielectrically actuated liquid lens. Opt Express 15, 7140-7145 (2007).

    Google Scholar

    [14] Ren H W, Xianyu H Q, Xu S, Wu S T. Adaptive dielectric liquid lens. Opt Express 16, 14954-14960 (2008).

    Google Scholar

    [15] Dong L, Agarwal A K, Beebe D J, Jiang H R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006).

    Google Scholar

    [16] López C A, Hirsa A H. Fast focusing using a pinned-contact oscillating liquid lens. Nat Photonics 2, 610-613 (2008).

    Google Scholar

    [17] Mao X L, Waldeisen J R, Juluri B K, Huang T J. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303-1308 (2007).

    Google Scholar

    [18] Miccio L, Memmolo P, Merola F, Netti P A, Ferraro P. Red blood cell as an adaptive optofluidic microlens. Nat Commun 6, 6502 (2015).

    Google Scholar

    [19] Li Y C, Liu X S, Yang X G, Lei H X, Zhang Y et al. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano 11, 10672-10680 (2017).

    Google Scholar

    [20] Naumov A F, Loktev Y M, Guralnik I R, Vdovin G. Liquid-crystal adaptive lenses with modal control. Opt Lett 23, 992-994 (1998).

    Google Scholar

    [21] Lin Y H, Chen M S, Lin H C. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. Opt Express 19, 4714-4721 (2011).

    Google Scholar

    [22] Hsieh P Y, Chou P Y, Lin H A, Chu C Y, Huang C T et al. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array. Opt Express 26, 10981-10996 (2018).

    Google Scholar

    [23] Li L, Wang D, Liu C, Wang Q H. Zoom microscope objective using electrowetting lenses. Opt Express 24, 2931-2940 (2016).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint