Citation: | Li L, Xiao L, Wang J H, Wang Q H. Movable electrowetting optofluidic lens for optical axial scanning in microscopy. Opto-Electron Adv 2, 180025 (2019). doi: 10.29026/oea.2019.180025 |
[1] | Murphy D B. Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York, 2001). |
[2] | Pawley J B. Handbook of Biological Confocal Microscopy (Springer, Boston, MA, 2006). |
[3] | Martínez-Corral M, Saavedra G. The resolution challenge in 3D optical microscopy. Prog Opt 53, 1-67 (2009). |
[4] | Sánchez-Ortiga E, Sheppard C J R, Saavedra G, Martínez-Corral M, Doblas A et al. Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector. Opt Lett 37, 1280-1282 (2012). |
[5] | York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9, 749-754 (2012). |
[6] | Ahrens M B, Orger M B, Robson D N, Li J M, Keller P J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 9, 413-420 (2013). |
[7] | Chen C W, Cho M, Huang Y P, Javidi B. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens. Opt Lett 37, 4125-4127 (2012). |
[8] | Martínez-Corral M, Hsieh P Y, Doblas A, Sánchez-Ortiga E, Saavedra G et al. Fast axial-scanning widefield microscopy with constant magnification and resolution. J Disp Technol 11, 913-920 (2015). |
[9] | Jabbour J M, Malik B H, Olsovsky C, Cuenca R, Cheng S N et al. Optical axial scanning in confocal microscopy using an electrically tunable lens. Biomed Opt Express 5, 645-652 (2014). |
[10] | Koukourakis N, Finkeldey M, Stürmer M, Leithold C, Gerhardt N C et al. Axial scanning in confocal microscopy employing adaptive lenses (CAL). Opt Express 22, 6025-6039 (2014). |
[11] | Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3, 159-163 (2000). |
[12] | Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85, 1128-1130 (2004). |
[13] | Cheng C C, Yeh J A. Dielectrically actuated liquid lens. Opt Express 15, 7140-7145 (2007). |
[14] | Ren H W, Xianyu H Q, Xu S, Wu S T. Adaptive dielectric liquid lens. Opt Express 16, 14954-14960 (2008). |
[15] | Dong L, Agarwal A K, Beebe D J, Jiang H R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006). |
[16] | López C A, Hirsa A H. Fast focusing using a pinned-contact oscillating liquid lens. Nat Photonics 2, 610-613 (2008). |
[17] | Mao X L, Waldeisen J R, Juluri B K, Huang T J. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303-1308 (2007). |
[18] | Miccio L, Memmolo P, Merola F, Netti P A, Ferraro P. Red blood cell as an adaptive optofluidic microlens. Nat Commun 6, 6502 (2015). |
[19] | Li Y C, Liu X S, Yang X G, Lei H X, Zhang Y et al. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano 11, 10672-10680 (2017). |
[20] | Naumov A F, Loktev Y M, Guralnik I R, Vdovin G. Liquid-crystal adaptive lenses with modal control. Opt Lett 23, 992-994 (1998). |
[21] | Lin Y H, Chen M S, Lin H C. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. Opt Express 19, 4714-4721 (2011). |
[22] | Hsieh P Y, Chou P Y, Lin H A, Chu C Y, Huang C T et al. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array. Opt Express 26, 10981-10996 (2018). |
[23] | Li L, Wang D, Liu C, Wang Q H. Zoom microscope objective using electrowetting lenses. Opt Express 24, 2931-2940 (2016). |
Schematic cross-sectional structure and operating mechanism of the movable electrowetting optofluidic lens.
Performance of moving and deforming actuation of the movable electrowetting optofluidic lens.
Fabricated prototype of the movable electrowetting optofluidic lens.
(a) Simulation of the movable electrowetting optofluidic lens. (b) MTF for 20 mm object distance. (c) MTF for 20.5 mm object distance. (d) MTF for 21 mm object distance.
Imaging experiment using the movable electrowetting optofluidic lens.