Citation: | Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019). doi: 10.29026/oea.2019.180026 |
[1] | Kidder L H, Levin I W, Lewis E N, Kleiman V D, Heilweil E J. Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging. Opt Lett 22, 742-744 (1997). doi: 10.1364/OL.22.000742 |
[2] | Phillips C C. Doping superlattices based on InSb for mid-infrared detector applications. Appl Phys Lett 56, 151-153 (1990). doi: 10.1063/1.103060 |
[3] | Yuan Z L, Kardynal B E, Sharpe A W, Shields A J. High speed single photon detection in the near infrared. Appl Phys Lett 91, 041114 (2007). doi: 10.1063/1.2760135 |
[4] | Hostut M, Alyoruk M, Ergun Y, Sokmen I. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A 98, 269-273 (2010). doi: 10.1007/s00339-009-5415-8 |
[5] | Rogalski A. Infrared Detectors (CRC Press, New York, United States, 2000). |
[6] | Chen X Q, Liu X L, Wu B, Nan H, Guo H Y et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett 17, 6391-6396 (2017). doi: 10.1021/acs.nanolett.7b03263 |
[7] | Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation. Nat Photonics 8, 13-22 (2014). doi: 10.1038/nphoton.2013.232 |
[8] | Tobing L Y M, Tjahjana L, Zhang D H, Zhang Q, Xiong Q H. Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum. Adv Opt Mater 2, 280-285 (2014). doi: 10.1002/adom.v2.3 |
[9] | Tobing L Y M, Zhang D H. Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures. Adv Mater 28, 889-896 (2016). doi: 10.1002/adma.v28.5 |
[10] | Tobing L Y M, Luo Y, Low K S, Zhang D W, Zhang D H. Observation of the kinetic inductance limitation for the fundamental magnetic resonance in Ultrasmall gold v -shape split ring resonators. Adv Opt Mater 4, 1047-1052 (2016). doi: 10.1002/adom.201500739 |
[11] | Ferry V E, Sweatlock L A, Pacifici D, Atwater H A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8, 4391-4397 (2008). doi: 10.1021/nl8022548 |
[12] | Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 7, 888-891 (2013). doi: 10.1038/nphoton.2013.241 |
[13] | Tong J C, Tobing L Y M, Ni P N, Zhang D H. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode. Appl Surf Sci 427, 605-608 (2018). doi: 10.1016/j.apsusc.2017.08.177 |
[14] | Tong J C, Tobing L Y M, Qian L, Suo F, Zhang D H. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature. J Mater Sci 53, 13010-13017 (2018). doi: 10.1007/s10853-018-2573-0 |
[15] | Suo F, Tong J C, Qian L, Zhang D H. Study of dark current in mid-infrared InAsSb-based hetero n-i-p photodiode. J Phys D Appl Phys 51, 275102 (2018). doi: 10.1088/1361-6463/aac8d0 |
[16] | Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89, 151109 (2006). doi: 10.1063/1.2360235 |
[17] | Baril N, Brown A, Maloney P, Tidrow M, Lubyshev D et al. Bulk InAsxSb1-x nBn photodetectors with greater than 5 μm cutoff on GaSb. Appl Phys Lett 109, 122104 (2016). doi: 10.1063/1.4963069 |
[18] | Akbari A, Tait R N, Berini P. Surface plasmon waveguide Schottky detector. Opt Express 18, 8505-8514 (2010). doi: 10.1364/OE.18.008505 |
[19] | Wu W, Bonakdar A, Mohseni H. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96, 161107 (2010). doi: 10.1063/1.3419885 |
[20] | Kulkarni E S, Heussler S P, Stier A V, Martin-Fernandez I, Andersen H et al. Exploiting the IR transparency of graphene for fast pyroelectric infrared detection. Adv Opt Mater 3, 34-38 (2015). doi: 10.1002/adom.v3.1 |
[21] | Alavirad M, Roy L, Berini P. Surface plasmon enhanced photodetectors based on internal photoemission. J Photonics Energy 6, 042511 (2016). doi: 10.1117/1.JPE.6.042511 |
[22] | Atwater H A, Polman A. Plasmonics for improved photovoltaic devices.Nat Mater 9, 205-213 (2010). doi: 10.1038/nmat2629 |
[23] | Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, US, 2007). |
[24] | Knight M W, Sobhani H, Nordlander P, Halas N J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056 |
[25] | Tong J C, Zhou W, Qu Y, Xu Z J, Huang Z M et al. Surface Plasmon induced direct detection of long wavelength photons. Nat Commun 8, 1660 (2017). doi: 10.1038/s41467-017-01828-2 |
[26] | Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937 |
[27] | Sevenler D, Ünlü N L, Ünlü M S. Nanoparticle biosensing with interferometric reflectance imaging. In Nanobiosensors and Nanobioanalyses (Springer, Tokyo, Japan, 2015). |
[28] | Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a Plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642 |
[29] | Alavirad M, Olivieri A, Roy L, Berini P. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt Express 24, 22544-22554 (2016). doi: 10.1364/OE.24.022544 |
[30] | Tong J C, Tobing L Y M, Qiu S P, Zhang D H, Unil Perera A G. Room temperature Plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl Phys Lett 113, 011110 (2018). doi: 10.1063/1.5018012 |
[31] | Yakimov A I, Kirienko V V., Armbrister V A, Bloshkin A A, Dvurechenskii A V. Surface Plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface. Appl Phys Lett 112, 171107 (2018). doi: 10.1063/1.5029289 |
[32] | Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667-669 (1998). doi: 10.1038/35570 |
[33] | Chen M Y, Shao L, Kershaw S V, Yu H, Wang J F et al. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 8, 8208-8216 (2014). doi: 10.1021/nn502510u |
[34] | Jakšić Z, Milinović M, Randjelović D. Nanotechnological enhancement of infrared detectors by Plasmon resonance in transparent conductive oxide nanoparticles. Strojniški Vestn - J Mech Eng 58, 367-375 (2012). doi: 10.5545/sv-jme |
[35] | Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2, 335-338 (2015). doi: 10.1364/OPTICA.2.000335 |
[36] | Ogawa S, Fujisawa D, Shimatani M, Matsumoto K. Graphene on Plasmonic metamaterials for infrared detection. Proc SPIE 9819, 98191S (2016). |
[37] | Tong J C, Tobing L Y M, Zhang D H. Electrically controlled enhancement in plasmonic mid-infrared photodiode. Opt Express 26, 5452-5460 (2018). doi: 10.1364/OE.26.005452 |
[38] | Tong J C, Tobing LYM, Luo Y, Zhang D W, Zhang D H. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Sci Rep 8, 1548 (2018). doi: 10.1038/s41598-018-20028-6 |
[39] | Tong J C, Xie Y Y, Xu Z J, Qiu S P, Ni P N et al. Study of dual color infrared photodetection from n-GaSb/n-InAsSb heterostructures. AIP Adv 6, 025120 (2016). doi: 10.1063/1.4942936 |
[40] | Qiu S P, Tobing L Y M, Tong J C, Xie Y Y, Xu Z J et al. Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection. Opt Quantum Electron 48, 203 (2016). doi: 10.1007/s11082-016-0472-7 |
[41] | Qiu S P, Tobing L Y M, Xu Z J, Tong J C, Ni P N et al. Surface Plasmon enhancement on infrared Photodetection. Proc Eng 140, 152-158 (2016). doi: 10.1016/j.proeng.2015.10.151 |
[42] | Nolde J A, Kim M, Kim C S, Jackson E M, Ellis C T et al. Resonant quantum efficiency enhancement of Midwave infrared nBn photodetectors using one-dimensional plasmonic gratings. Appl Phys Lett 106, 261109 (2015). doi: 10.1063/1.4923404 |
[43] | Jackson E M, Nolde J A, Kim M, Kim C S, Cleveland E R et al. Two-dimensional plasmonic grating for increased quantum efficiency in midwave infrared nBn detectors with thin absorbers. Opt Express 26, 13850-13864 (2018). doi: 10.1364/OE.26.013850 |
[44] | Scales C, Breukelaar I, Berini P. Surface-Plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Opt Lett 35, 529-531 (2010). doi: 10.1364/OL.35.000529 |
[45] | Yu Z F, Veronis G, Fan S H, Brongersma M L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89, 151116 (2006). doi: 10.1063/1.2360896 |
[46] | Yao Y, Shankar R, Rauter P, Song Y, Kong J et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced Photocarrier generation and collection. Nano Lett 14, 3749-3754 (2014). doi: 10.1021/nl500602n |
[47] | Yao Y, Kats M A, Genevet P, Yu N F, Song Y et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13, 1257-1264 (2013). doi: 10.1021/nl3047943 |
[48] | Salamin Y, Ma P, Baeuerle B, Emboras A, Fedoryshyn Y et al. 100 GHz plasmonic photodetector. ACS Photonics 5, 3291-3297 (2018). doi: 10.1021/acsphotonics.8b00525 |
[49] | Chang C Y, Chang H Y, Chen C Y, Tsai M W, Chang Y T et al. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett 91, 163107 (2007). doi: 10.1063/1.2800378 |
[50] | Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V et al. A surface Plasmon enhanced infrared photodetector based on InAs Quantum dots. Nano Lett 10, 1704-1709 (2010). doi: 10.1021/nl100081j |
[51] | Yakimov A I, Kirienko V V, Bloshkin A A, Armbrister V A, Dvurechenskii A V et al. Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons. Opt Express 25, 25602-25611 (2017). doi: 10.1364/OE.25.025602 |
[52] | Vasinajindakaw P, Vaillancourt J, Gu G R, Liu R Y, Ling Y F et al. A Fano-type interference enhanced quantum dot infrared photodetector. Appl Phys Lett 98, 211111 (2011). doi: 10.1063/1.3593128 |
[53] | Yifat Y, Ackerman M, Guyot-Sionnest P. Mid-IR colloidal quantum dot detectors enhanced by optical Nano-antennas. Appl Phys Lett 110, 041106 (2017). doi: 10.1063/1.4975058 |
[54] | Tang X, Wu G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J Mater Chem C 5, 362-369 (2017). doi: 10.1039/C6TC04248A |
[55] | Liu G T, Stintz A, Li H, Newell T C, Gray A L et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures. IEEE J Quantum Electron 36, 1272-1279 (2000). doi: 10.1109/3.890268 |
[56] | Lee S J, Ku Z, Barve A, Montoya J, Jang W Y et al. A monolithically integrated plasmonic infrared quantum dot camera. Nat Commun 2, 286 (2011). doi: 10.1038/ncomms1283 |
[57] | Schwarz B, Reininger P, Ristanić D, Detz H, Andrews A M et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat Commun 5, 4085 (2014). doi: 10.1038/ncomms5085 |
[58] | Zhai S Q, Liu J Q, Liu F Q, Wang Z G. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett 100, 181104 (2012). doi: 10.1063/1.4710523 |
[59] | Dao T D, Ishii S, Yokoyama T, Sawada T, Sugavaneshwar R P et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors. ACS Photonics 3, 1271-1278 (2016). doi: 10.1021/acsphotonics.6b00249 |
[60] | Suen J Y, Fan K B, Montoya J, Bingham C, Stenger V et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276-279 (2017). doi: 10.1364/OPTICA.4.000276 |
[61] | Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Gacemi D et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85-88 (2018). doi: 10.1038/nature25790 |
[62] | Huang H X, Wang F L, Liu Y, Wang S, Peng L M. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl Mater Interfaces 9, 12743-12749 (2017). doi: 10.1021/acsami.7b01301 |
[63] | Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q et al. Split bull's eye shaped aluminum antenna for Plasmon-enhanced nanometer scale germanium photodetector. Nano Lett 11, 1289-1293 (2011). doi: 10.1021/nl104338z |
(a) Surface plasmon polariton at single interface. (b) Localized surface plasma resonance for subwavelength metal nanoparticles. Figures reproduced from: (a) ref. 26, Nature Publishing Group; (b) ref. 27, Springer International Publishing AG.
Basic optical detection mechanism in semiconductors. (a) Intrinsic absorption (interband transition), (b) Free carrier absorption, (c) Extrinsic absorption (impurity transition).
Different plasmonic structures. (a) Grating structure. (b) Two-dimensional hole array structure. (c) Nanorods inserted in absorber. (d) Nanoparticle. (e) Nanopyramids. (f) Micropatch. Figures reproduced from: (a) ref. 28, Macmillan Publishers Limited; (b) ref. 31, AIP Publishing; (c) ref. 33, American Chemical Society; (d) ref. 34, Journal of Mechanical Engineering; (e) ref. 35, Optical Society of America.
Plasmonic 2DSHA-hetero n-i-p photodetector. (a) Schematic diagram of the device. (b) Spectra of electric field enhancement in 2DSHA with a period of 900 nm at the hot spot position, as indicated in the inset. (c) Room-temperature responsivity. (d) Room-temperature blackbody detectivity. Figures reproduced from: ref. 30, AIP Publishing.
Plasmonic 2DSHA-hetero n-InAsSb/n-GaSb photodetector. (a) Schematic diagram of the device. (b) Photocurrent spectral measured at room temperature. Figures reproduced from: (a) ref. 40, Springer Science+Business Media New York; (b) ref. 38.
Schematic diagrams of plasmonic Schottky detectors. A gold patch on p-Si substrate with a gold grating on top. Figures reproduced from ref. 29, Optical Society of America.
Schematic diagrams of plasmonic photoconductive detectors. (a) Antenna assisted graphene detector. (b) MSM plasmonic waveguide with Ge as absorber and Au as plasmonic cladding. Figures reproduced from: (a) ref. 46, American Chemical Society; (b) ref. 48, American Chemical Society.
Schematic diagrams of plasmonic quantum type detectors. (a) 2DSHA gold structure fabricated on the Ge/Si QDIP. (b) Au nanoantenna embedded in the QD layer on SiO2 substrate. (c) Plasmonic nano-disk arrays on QDIP. (d) Plasmonic hole array patterned on top of the DWELL detector. Figures reproduced from: (a) ref. 31, AIP Publishing; (b) ref. 53, AIP Publishing; (c) ref. 54, The Royal Society of Chemistry; (d) ref. 56, Macmillan Publishers Limited.
Schematic diagrams of plasmonic thermal detectors. (a) A gold 2DSHA structure on top of ZnO pyroelectric layer. (b) A unit cell of the plasmonic absorber consisting of symmetrical gold split cross resonator. Figures reproduced from: (a) ref. 59, American Chemical Society; (b) ref. 60, Optical Society of America.
Schematic diagrams of plasmonic detectors. (a) Scanning electron microscope (SEM) image of the detector integrated with plasmonic patch resonator array. (b) SEM image of the CNT detector with plasmonic electrodes. Figure reproduced from: (a) ref. 61, Macmillan Publishers Limited; (b) ref. 62, American Chemical Society.