Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019). doi: 10.29026/oea.2019.180026
Citation: Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019). doi: 10.29026/oea.2019.180026

Review Open Access

Surface plasmon enhanced infrared photodetection

More Information
  • These authors contributed equally to this work

  • *Corresponding author: D H Zhang, E-mail: EDHZHANG@ntu.edu.sg
  • infrared photodetectors have been used extensively in biomedicine, surveillance, communication and astronomy. however, state of the art technology based on Ⅲ-Ⅴ and Ⅱ-Ⅵ compounds still lacks excellent performance for high-temperature operation. surface plasmon polaritons (spps) have demonstrated their capability in improving the light detection from visible to infrared wave range due to their light confinement in subwavelength scale. advanced fabrication techniques such as electron-beam lithography (ebl) and focused ion-beam (fib), and commercially available numerical design tool like finite-difference time-domain (fdtd) have enabled rapid development of surface plasmon (sp) enhanced photodetectors. in this review article, the basic mechanisms behind the sp-enhanced photodetection, the different type of plasmonic nanostructures utilized for enhancement, and the reported sp-enhanced infrared photodetectors will be discussed.
  • 加载中
  • [1] Kidder L H, Levin I W, Lewis E N, Kleiman V D, Heilweil E J. Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging. Opt Lett 22, 742-744 (1997). doi: 10.1364/OL.22.000742

    CrossRef Google Scholar

    [2] Phillips C C. Doping superlattices based on InSb for mid-infrared detector applications. Appl Phys Lett 56, 151-153 (1990). doi: 10.1063/1.103060

    CrossRef Google Scholar

    [3] Yuan Z L, Kardynal B E, Sharpe A W, Shields A J. High speed single photon detection in the near infrared. Appl Phys Lett 91, 041114 (2007). doi: 10.1063/1.2760135

    CrossRef Google Scholar

    [4] Hostut M, Alyoruk M, Ergun Y, Sokmen I. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A 98, 269-273 (2010). doi: 10.1007/s00339-009-5415-8

    CrossRef Google Scholar

    [5] Rogalski A. Infrared Detectors (CRC Press, New York, United States, 2000).

    Google Scholar

    [6] Chen X Q, Liu X L, Wu B, Nan H, Guo H Y et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett 17, 6391-6396 (2017). doi: 10.1021/acs.nanolett.7b03263

    CrossRef Google Scholar

    [7] Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation. Nat Photonics 8, 13-22 (2014). doi: 10.1038/nphoton.2013.232

    CrossRef Google Scholar

    [8] Tobing L Y M, Tjahjana L, Zhang D H, Zhang Q, Xiong Q H. Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum. Adv Opt Mater 2, 280-285 (2014). doi: 10.1002/adom.v2.3

    CrossRef Google Scholar

    [9] Tobing L Y M, Zhang D H. Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures. Adv Mater 28, 889-896 (2016). doi: 10.1002/adma.v28.5

    CrossRef Google Scholar

    [10] Tobing L Y M, Luo Y, Low K S, Zhang D W, Zhang D H. Observation of the kinetic inductance limitation for the fundamental magnetic resonance in Ultrasmall gold v -shape split ring resonators. Adv Opt Mater 4, 1047-1052 (2016). doi: 10.1002/adom.201500739

    CrossRef Google Scholar

    [11] Ferry V E, Sweatlock L A, Pacifici D, Atwater H A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8, 4391-4397 (2008). doi: 10.1021/nl8022548

    CrossRef Google Scholar

    [12] Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 7, 888-891 (2013). doi: 10.1038/nphoton.2013.241

    CrossRef Google Scholar

    [13] Tong J C, Tobing L Y M, Ni P N, Zhang D H. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode. Appl Surf Sci 427, 605-608 (2018). doi: 10.1016/j.apsusc.2017.08.177

    CrossRef Google Scholar

    [14] Tong J C, Tobing L Y M, Qian L, Suo F, Zhang D H. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature. J Mater Sci 53, 13010-13017 (2018). doi: 10.1007/s10853-018-2573-0

    CrossRef Google Scholar

    [15] Suo F, Tong J C, Qian L, Zhang D H. Study of dark current in mid-infrared InAsSb-based hetero n-i-p photodiode. J Phys D Appl Phys 51, 275102 (2018). doi: 10.1088/1361-6463/aac8d0

    CrossRef Google Scholar

    [16] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89, 151109 (2006). doi: 10.1063/1.2360235

    CrossRef Google Scholar

    [17] Baril N, Brown A, Maloney P, Tidrow M, Lubyshev D et al. Bulk InAsxSb1-x nBn photodetectors with greater than 5 μm cutoff on GaSb. Appl Phys Lett 109, 122104 (2016). doi: 10.1063/1.4963069

    CrossRef Google Scholar

    [18] Akbari A, Tait R N, Berini P. Surface plasmon waveguide Schottky detector. Opt Express 18, 8505-8514 (2010). doi: 10.1364/OE.18.008505

    CrossRef Google Scholar

    [19] Wu W, Bonakdar A, Mohseni H. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96, 161107 (2010). doi: 10.1063/1.3419885

    CrossRef Google Scholar

    [20] Kulkarni E S, Heussler S P, Stier A V, Martin-Fernandez I, Andersen H et al. Exploiting the IR transparency of graphene for fast pyroelectric infrared detection. Adv Opt Mater 3, 34-38 (2015). doi: 10.1002/adom.v3.1

    CrossRef Google Scholar

    [21] Alavirad M, Roy L, Berini P. Surface plasmon enhanced photodetectors based on internal photoemission. J Photonics Energy 6, 042511 (2016). doi: 10.1117/1.JPE.6.042511

    CrossRef Google Scholar

    [22] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices.Nat Mater 9, 205-213 (2010). doi: 10.1038/nmat2629

    CrossRef Google Scholar

    [23] Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, US, 2007).

    Google Scholar

    [24] Knight M W, Sobhani H, Nordlander P, Halas N J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056

    CrossRef Google Scholar

    [25] Tong J C, Zhou W, Qu Y, Xu Z J, Huang Z M et al. Surface Plasmon induced direct detection of long wavelength photons. Nat Commun 8, 1660 (2017). doi: 10.1038/s41467-017-01828-2

    CrossRef Google Scholar

    [26] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [27] Sevenler D, Ünlü N L, Ünlü M S. Nanoparticle biosensing with interferometric reflectance imaging. In Nanobiosensors and Nanobioanalyses (Springer, Tokyo, Japan, 2015).

    Google Scholar

    [28] Sobhani A, Knight M W, Wang Y M, Zheng B, King N S et al. Narrowband photodetection in the near-infrared with a Plasmon-induced hot electron device. Nat Commun 4, 1643 (2013). doi: 10.1038/ncomms2642

    CrossRef Google Scholar

    [29] Alavirad M, Olivieri A, Roy L, Berini P. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt Express 24, 22544-22554 (2016). doi: 10.1364/OE.24.022544

    CrossRef Google Scholar

    [30] Tong J C, Tobing L Y M, Qiu S P, Zhang D H, Unil Perera A G. Room temperature Plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl Phys Lett 113, 011110 (2018). doi: 10.1063/1.5018012

    CrossRef Google Scholar

    [31] Yakimov A I, Kirienko V V., Armbrister V A, Bloshkin A A, Dvurechenskii A V. Surface Plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface. Appl Phys Lett 112, 171107 (2018). doi: 10.1063/1.5029289

    CrossRef Google Scholar

    [32] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667-669 (1998). doi: 10.1038/35570

    CrossRef Google Scholar

    [33] Chen M Y, Shao L, Kershaw S V, Yu H, Wang J F et al. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 8, 8208-8216 (2014). doi: 10.1021/nn502510u

    CrossRef Google Scholar

    [34] Jakšić Z, Milinović M, Randjelović D. Nanotechnological enhancement of infrared detectors by Plasmon resonance in transparent conductive oxide nanoparticles. Strojniški Vestn - J Mech Eng 58, 367-375 (2012). doi: 10.5545/sv-jme

    CrossRef Google Scholar

    [35] Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2, 335-338 (2015). doi: 10.1364/OPTICA.2.000335

    CrossRef Google Scholar

    [36] Ogawa S, Fujisawa D, Shimatani M, Matsumoto K. Graphene on Plasmonic metamaterials for infrared detection. Proc SPIE 9819, 98191S (2016).

    Google Scholar

    [37] Tong J C, Tobing L Y M, Zhang D H. Electrically controlled enhancement in plasmonic mid-infrared photodiode. Opt Express 26, 5452-5460 (2018). doi: 10.1364/OE.26.005452

    CrossRef Google Scholar

    [38] Tong J C, Tobing LYM, Luo Y, Zhang D W, Zhang D H. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Sci Rep 8, 1548 (2018). doi: 10.1038/s41598-018-20028-6

    CrossRef Google Scholar

    [39] Tong J C, Xie Y Y, Xu Z J, Qiu S P, Ni P N et al. Study of dual color infrared photodetection from n-GaSb/n-InAsSb heterostructures. AIP Adv 6, 025120 (2016). doi: 10.1063/1.4942936

    CrossRef Google Scholar

    [40] Qiu S P, Tobing L Y M, Tong J C, Xie Y Y, Xu Z J et al. Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection. Opt Quantum Electron 48, 203 (2016). doi: 10.1007/s11082-016-0472-7

    CrossRef Google Scholar

    [41] Qiu S P, Tobing L Y M, Xu Z J, Tong J C, Ni P N et al. Surface Plasmon enhancement on infrared Photodetection. Proc Eng 140, 152-158 (2016). doi: 10.1016/j.proeng.2015.10.151

    CrossRef Google Scholar

    [42] Nolde J A, Kim M, Kim C S, Jackson E M, Ellis C T et al. Resonant quantum efficiency enhancement of Midwave infrared nBn photodetectors using one-dimensional plasmonic gratings. Appl Phys Lett 106, 261109 (2015). doi: 10.1063/1.4923404

    CrossRef Google Scholar

    [43] Jackson E M, Nolde J A, Kim M, Kim C S, Cleveland E R et al. Two-dimensional plasmonic grating for increased quantum efficiency in midwave infrared nBn detectors with thin absorbers. Opt Express 26, 13850-13864 (2018). doi: 10.1364/OE.26.013850

    CrossRef Google Scholar

    [44] Scales C, Breukelaar I, Berini P. Surface-Plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Opt Lett 35, 529-531 (2010). doi: 10.1364/OL.35.000529

    CrossRef Google Scholar

    [45] Yu Z F, Veronis G, Fan S H, Brongersma M L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89, 151116 (2006). doi: 10.1063/1.2360896

    CrossRef Google Scholar

    [46] Yao Y, Shankar R, Rauter P, Song Y, Kong J et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced Photocarrier generation and collection. Nano Lett 14, 3749-3754 (2014). doi: 10.1021/nl500602n

    CrossRef Google Scholar

    [47] Yao Y, Kats M A, Genevet P, Yu N F, Song Y et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13, 1257-1264 (2013). doi: 10.1021/nl3047943

    CrossRef Google Scholar

    [48] Salamin Y, Ma P, Baeuerle B, Emboras A, Fedoryshyn Y et al. 100 GHz plasmonic photodetector. ACS Photonics 5, 3291-3297 (2018). doi: 10.1021/acsphotonics.8b00525

    CrossRef Google Scholar

    [49] Chang C Y, Chang H Y, Chen C Y, Tsai M W, Chang Y T et al. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett 91, 163107 (2007). doi: 10.1063/1.2800378

    CrossRef Google Scholar

    [50] Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V et al. A surface Plasmon enhanced infrared photodetector based on InAs Quantum dots. Nano Lett 10, 1704-1709 (2010). doi: 10.1021/nl100081j

    CrossRef Google Scholar

    [51] Yakimov A I, Kirienko V V, Bloshkin A A, Armbrister V A, Dvurechenskii A V et al. Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons. Opt Express 25, 25602-25611 (2017). doi: 10.1364/OE.25.025602

    CrossRef Google Scholar

    [52] Vasinajindakaw P, Vaillancourt J, Gu G R, Liu R Y, Ling Y F et al. A Fano-type interference enhanced quantum dot infrared photodetector. Appl Phys Lett 98, 211111 (2011). doi: 10.1063/1.3593128

    CrossRef Google Scholar

    [53] Yifat Y, Ackerman M, Guyot-Sionnest P. Mid-IR colloidal quantum dot detectors enhanced by optical Nano-antennas. Appl Phys Lett 110, 041106 (2017). doi: 10.1063/1.4975058

    CrossRef Google Scholar

    [54] Tang X, Wu G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J Mater Chem C 5, 362-369 (2017). doi: 10.1039/C6TC04248A

    CrossRef Google Scholar

    [55] Liu G T, Stintz A, Li H, Newell T C, Gray A L et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures. IEEE J Quantum Electron 36, 1272-1279 (2000). doi: 10.1109/3.890268

    CrossRef Google Scholar

    [56] Lee S J, Ku Z, Barve A, Montoya J, Jang W Y et al. A monolithically integrated plasmonic infrared quantum dot camera. Nat Commun 2, 286 (2011). doi: 10.1038/ncomms1283

    CrossRef Google Scholar

    [57] Schwarz B, Reininger P, Ristanić D, Detz H, Andrews A M et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat Commun 5, 4085 (2014). doi: 10.1038/ncomms5085

    CrossRef Google Scholar

    [58] Zhai S Q, Liu J Q, Liu F Q, Wang Z G. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett 100, 181104 (2012). doi: 10.1063/1.4710523

    CrossRef Google Scholar

    [59] Dao T D, Ishii S, Yokoyama T, Sawada T, Sugavaneshwar R P et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors. ACS Photonics 3, 1271-1278 (2016). doi: 10.1021/acsphotonics.6b00249

    CrossRef Google Scholar

    [60] Suen J Y, Fan K B, Montoya J, Bingham C, Stenger V et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276-279 (2017). doi: 10.1364/OPTICA.4.000276

    CrossRef Google Scholar

    [61] Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Gacemi D et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85-88 (2018). doi: 10.1038/nature25790

    CrossRef Google Scholar

    [62] Huang H X, Wang F L, Liu Y, Wang S, Peng L M. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl Mater Interfaces 9, 12743-12749 (2017). doi: 10.1021/acsami.7b01301

    CrossRef Google Scholar

    [63] Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q et al. Split bull's eye shaped aluminum antenna for Plasmon-enhanced nanometer scale germanium photodetector. Nano Lett 11, 1289-1293 (2011). doi: 10.1021/nl104338z

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint