[1]
|
Nann S, Riordan C. Solar Spectral irradiance under clear and cloudy skies: measurements and a semiempirical model. J Appl Meteorol 30, 447-462 (1991). doi: 10.1175/1520-0450(1991)030<0447:SSIUCA>2.0.CO;2
CrossRef Google Scholar
|
[2]
|
Shimokawa R, Miyake Y, Nakanishi Y, Kuwano Y, Hamakawa Y. Effect of atmospheric parameters on solar cell performance under global irradiance. Sol Cells 19, 59-72 (1986). doi: 10.1016/0379-6787(86)90050-5
CrossRef Google Scholar
|
[3]
|
Alboteanu I, Bulucea C, Degeratu S. Estimating solar irradiation absorbed by photovoltaic panels with low concentration located in Craiova, Romania. Sustainability 7, 2644-2661 (2015). doi: 10.3390/su7032644
CrossRef Google Scholar
|
[4]
|
Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42, 173-201 (2013). doi: 10.1039/C2CS35288E
CrossRef Google Scholar
|
[5]
|
Bünzli J-C G, Chauvin A-S. Handbook on the Physics and Chemistry of Rare-Earths (Elsevier B. V., Amsterdam), 169-281 (2014).
Google Scholar
|
[6]
|
Ho W-J, Deng Y-J, Liu J-J, Feng S-K, Lin J-C et al. Photovoltaic performance characterization of textured silicon solar cells using luminescent down-shifting Eu-doped phosphor particles of various dimensions. Materials10, 21 (2017). doi: 10.3390/ma10010021
CrossRef Google Scholar
|
[7]
|
Ho W-J, You B-J, Liu J-J, Bai W-B, Syu H-J et al. Photovoltaic performance enhancement of silicon solar cells based on combined ratios of three species of Europium-doped phosphors. Materials 11, 845 (2018). doi: 10.3390/ma11050845
CrossRef Google Scholar
|
[8]
|
Ho W-J, Feng S-K, Liu J-J, Yang Y-C, Ho C-H. Improving photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects. Appl Surf Sci 439, 868-875 (2018). doi: 10.1016/j.apsusc.2017.12.232
CrossRef Google Scholar
|
[9]
|
Klampaftis E, Ross D, McIntosh K R, Richards B S. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol Energy Mater Sol Cells 93, 1182-1194 (2009). doi: 10.1016/j.solmat.2009.02.020
CrossRef Google Scholar
|
[10]
|
Klampaftis E, Richards B S. Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog Photovoltaics Res Appl 19, 345-351 (2011). doi: 10.1002/pip.1019
CrossRef Google Scholar
|
[11]
|
Kataoka H, Omagari S, Nakanishi T, Hasegawa Y. EVA thin film with thermo- and moisture-stable luminescent copolymer beads composed of Eu(Ⅲ) complexes for improvement of energy conversion efficiency on silicon solar cell. Opt Mater42, 411-416 (2015). doi: 10.1016/j.optmat.2015.01.038
CrossRef Google Scholar
|
[12]
|
Ho W-J, Shen Y-T, Liu J-J, You B-J, Ho C-H et al. Enhancing photovoltaic performance using broadband luminescent down-shifting by combining multiple species of Eu-soped silicate phosphors. Nanomaterials 7, 340 (2017). doi: 10.3390/nano7100340
CrossRef Google Scholar
|
[13]
|
Liu J, Wang K, Zheng W, Huang W, Li C H et al. Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. Prog Photovoltaics 21, 668-675 (2013). doi: 10.1002/pip.1251
CrossRef Google Scholar
|
[14]
|
Monzón-Hierro T, Sanchiz J, González-Pérez S, González-Díaz B, Holinski S et al. A new cost-effective polymeric film containing an Eu(Ⅲ) complex acting as UV protector and down-converter for Si-based solar cells and modules.Sol Energy Mater Sol Cells 136, 187-192 (2015). doi: 10.1016/j.solmat.2015.01.020
CrossRef Google Scholar
|
[15]
|
Le Donne A, Acciarri M, Narducci D, Marchionna S, Binetti S. Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency. Prog Photovoltaics 17, 519-525 (2011).
Google Scholar
|
[16]
|
Le Donne A, Dilda M, Crippa M, Acciarri M, Binetti S. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency. Opt Mater 33, 1012-1014 (2011). doi: 10.1016/j.optmat.2010.10.005
CrossRef Google Scholar
|
[17]
|
González-Pérez S, Sanchiz J, González-Díaz B, Holinski S, Borchert D et al. Luminescent polymeric film containing an Eu(Ⅲ) complex acting as UV protector and down-converter for Si-based solar cells and modules. Surf Coatings Technol 271, 106-111 (2015). doi: 10.1016/j.surfcoat.2014.12.074
CrossRef Google Scholar
|
[18]
|
Kin E, Fukuda T, Yamauchi S, Honda Z, Ohara H et al. Thermal stability of europium(Ⅲ) chelate encapsulated by sol-gel glass. J Alloys Compd 480, 908-911 (2009). doi: 10.1016/j.jallcom.2009.02.063
CrossRef Google Scholar
|
[19]
|
Fix T, Nonat A, Imbert D, Di Pietro S, Mazzanti M et al. Enhancement of silicon solar cells by downshifting with Eu and Tb coordination complexes. Prog Photovoltaics Res Appl 24, 1251-1260 (2016). doi: 10.1002/pip.v24.9
CrossRef Google Scholar
|
[20]
|
Yang Y, Zhang S. Study of lanthanide complexes with salicylic acid by photoacoustic and fluorescence spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 60, 2065-2069 (2004). doi: 10.1016/j.saa.2003.11.005
CrossRef Google Scholar
|
[21]
|
Wu R, Zhao H, Su Q. Photoacoustic and fluorescence studies of silica gels doped with rare earth salicylic acid complexes. J Non-Cryst Solids 278, 223-227 (2000). doi: 10.1016/S0022-3093(00)00309-4
CrossRef Google Scholar
|
[22]
|
Misra V, Mishra H. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer. J Chem Phys 128, 244701 (2008). doi: 10.1063/1.2918284
CrossRef Google Scholar
|
[23]
|
Li S W, Song H W, Li W L, Ren X G, Lu S Z et al. Improved photoluminescence properties of ternary terbium complexes in mesoporous molecule sieves. J Phys Chem B 110, 23164-23169 (2006). doi: 10.1021/jp064509d
CrossRef Google Scholar
|
[24]
|
Fan X, Wang Z, Wang M. In situ synthesis kinetics of salicylicscid terbium complexes in sol-gel derived host materials. J Sol-Gel Sci Technol 30, 95-99 (2004). doi: 10.1023/B:JSST.0000034697.17767.96
CrossRef Google Scholar
|
[25]
|
de Zea Bermudez V, Carlos L D, Alcácer L. Sol-gel derived urea cross-linked organically modified silicates. 1. Room temperature mid-infrared spectra. Chem Mater 11, 569-580 (1999). doi: 10.1021/cm980372v
CrossRef Google Scholar
|
[26]
|
Molina C, Dahmouche K, Messaddeq Y, Ribeiro S J L, Silva M A P et al. Enhanced emission from Eu(Ⅲ) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic-inorganic hybrids. J Lumin 104, 93-101 (2003). doi: 10.1016/S0022-2313(02)00684-1
CrossRef Google Scholar
|
[27]
|
Correia S F H, Lima P P, Pecoraro E, Ribeiro S J L, André P S et al. Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics. Prog Photovoltaics Res Appl24, 1178-1193 (2016). doi: 10.1002/pip.v24.9
CrossRef Google Scholar
|
[28]
|
Correia S F H, Frias A R, Fu L, Rondão R, Pecoraro E et al. Large-area tunable visible-to-near-infrared luminescent solar concentrators. Adv Sustain Syst 2, 1800002 (2018). doi: 10.1002/adsu.v2.6
CrossRef Google Scholar
|
[29]
|
Correia S F H, Lima P P, André P S, Ferreira R A S, Carlos L D. High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Sol Energy Mater Sol Cells 138, 51-57 (2015). doi: 10.1016/j.solmat.2015.02.032
CrossRef Google Scholar
|
[30]
|
Freitas V T, Lima P P, Ferreira R A S, Pecoraro E, Fernandes M et al. Luminescent urea cross-linked tripodal siloxane-based hybrids. J Sol-Gel Sci Technol 65, 83-92 (2013). doi: 10.1007/s10971-012-2770-2
CrossRef Google Scholar
|
[31]
|
Carlos L D, de Zea Bermudez V, Ferreira R A S, Marques L, Assunção M. Sol-gel derived urea cross-linked organically modified silicates. 2. Blue-light emission.Chem Mater 11, 581-588 (1999). doi: 10.1021/cm980373n
CrossRef Google Scholar
|
[32]
|
Nolasco M M, Vaz P M, Freitas V T, Lima P P, André P S et al. Engineering highly efficient Eu(Ⅲ)-based tri-ureasil hybrids toward luminescent solar concentrators. J Mater Chem A 1, 7339-7350 (2013). doi: 10.1039/c3ta11463e
CrossRef Google Scholar
|
[33]
|
Kai J A, Felinto M C F C, Nunes L A O, Malta O L, Brito H F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-beta-diketonate complexes. J Mater Chem 21, 3796-3802 (2011). doi: 10.1039/c0jm03474f
CrossRef Google Scholar
|
[34]
|
Fernandes M, de Zea Bermudez V, Ferreira R A S, Carlos L D, Charas A et al. Highly photostable luminescent poly (E-caprolactone) siloxane biohybrids doped with europium complexes. Chem Mater 19, 3892-3901 (2007). doi: 10.1021/cm062832n
CrossRef Google Scholar
|
[35]
|
Reisfeld R, Shamrakov D, Jorgensen C. Photostable solar concentrators based on fluorescent glass-films. Sol Energy Mater Sol Cells 33, 417-427 (1994). doi: 10.1016/0927-0248(94)90002-7
CrossRef Google Scholar
|
[36]
|
Rondão R, Frias A R, Correia S F H, Fu L, de Zea Bermudez V et al. High-performance near-infrared luminescent solar concentrators. ACS Appl Mater Interfaces 9, 12540-12546 (2017). doi: 10.1021/acsami.7b02700
CrossRef Google Scholar
|
[37]
|
Gai Y, Jiang F, Chen L, Wu M, Su K et al. Europium and terbium coordination polymers assembled from hexacarboxylate ligands: structures and luminescent properties. Cryst Growth Des 14, 1010-1017 (2014). doi: 10.1021/cg401452p
CrossRef Google Scholar
|
[38]
|
Graffion J, Cojocariu A M, Cattoeen X, Ferreira R A S, Fernandes V R et al. Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. J Mater Chem 22, 13279-13285 (2012). doi: 10.1039/c2jm31289a
CrossRef Google Scholar
|
[39]
|
Lima P P, Ferreira R A S, Alves Junior S, Malta O L, Carlos L D. Terbium(Ⅲ)-containing organic-inorganic hybrids synthesized through hydrochloric acid catalysis. J Photochem Photobiol A-Chemistry 201, 214-221 (2009). doi: 10.1016/j.jphotochem.2008.10.021
CrossRef Google Scholar
|
[40]
|
Mahadik D B, Lakshmi R V, Barshilia H C. High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications. Sol Energy Mater Sol Cells 140, 61-68 (2015). doi: 10.1016/j.solmat.2015.03.023
CrossRef Google Scholar
|
[41]
|
Preston C, Xu Y L, Han X G, Munday J N, Hu L B. Optical haze of transparent and conductive silver nanowire films. Nano Res 6, 461-468 (2013). doi: 10.1007/s12274-013-0323-9
CrossRef Google Scholar
|
[42]
|
Griffini G, Bella F, Nisic F, Dragonetti C, Roberto D et al. Multifunctional luminescent down-shifting fluoropolymer coatings: a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells. Adv Energy Mater 5, 1401312 (2015). doi: 10.1002/aenm.201401312
CrossRef Google Scholar
|
[43]
|
Bin Hung W, Chen J Y, Sung K W, Chen T M. Enhanced conversion efficiency of crystalline Si solar cells via luminescent down-shifting using Ba2SiO4:Eu2+ phosphor. J Ceram Process Res 15, 157-161 (2014).
Google Scholar
|
[44]
|
Chen J-Y, Huang C K, Hung W B, Sun K W, Chen T M. Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence. Sol Energy Mater Sol Cells 120, 168-174 (2014). doi: 10.1016/j.solmat.2013.08.039
CrossRef Google Scholar
|
[45]
|
Liu J F, Yao Q H, Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells. Appl Phys Lett 88, 173119 (2006). doi: 10.1063/1.2198825
CrossRef Google Scholar
|