Sandra F. H. Correia, Ana R. N. Bastos, Lianshe Fu, et al. Lanthanide-based downshifting layers tested in a solar car race. Opto‐Electron Adv 2, 190006 (2019). doi: 10.29026/oea.2019.190006
Citation: Sandra F. H. Correia, Ana R. N. Bastos, Lianshe Fu, et al. Lanthanide-based downshifting layers tested in a solar car race. Opto‐Electron Adv 2, 190006 (2019). doi: 10.29026/oea.2019.190006

Original Article Open Access

Lanthanide-based downshifting layers tested in a solar car race

More Information
  • The mismatch between the AM1.5G spectrum and the photovoltaic (PV) cells absorption is one of the most limiting factors for PV performance. To overcome this constraint through the enhancement of solar energy harvesting, luminescent downshifting (LDS) layers are very promising to shape the incident sunlight and, thus, we report here the use of Tb3+- and Eu3+-doped organic-inorganic hybrid materials as LDS layers on Si PV cells. Electrical measurements on the PV cell, done before and after the deposition of the LDS layers, confirm the positive effect of the coatings on the cell's performance in the UV spectral region. The maximum delivered power and the maximum absolute external quantum efficiency increased 14% and 27%, respectively. Moreover, a solar powered car race was organized in which the small vehicle containing the coated PV cells presented a relative increase of 9% in the velocity, when compared to that with the uncoated one.
  • 加载中
  • [1] Nann S, Riordan C. Solar Spectral irradiance under clear and cloudy skies: measurements and a semiempirical model. J Appl Meteorol 30, 447-462 (1991). doi: 10.1175/1520-0450(1991)030<0447:SSIUCA>2.0.CO;2

    CrossRef Google Scholar

    [2] Shimokawa R, Miyake Y, Nakanishi Y, Kuwano Y, Hamakawa Y. Effect of atmospheric parameters on solar cell performance under global irradiance. Sol Cells 19, 59-72 (1986). doi: 10.1016/0379-6787(86)90050-5

    CrossRef Google Scholar

    [3] Alboteanu I, Bulucea C, Degeratu S. Estimating solar irradiation absorbed by photovoltaic panels with low concentration located in Craiova, Romania. Sustainability 7, 2644-2661 (2015). doi: 10.3390/su7032644

    CrossRef Google Scholar

    [4] Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42, 173-201 (2013). doi: 10.1039/C2CS35288E

    CrossRef Google Scholar

    [5] Bünzli J-C G, Chauvin A-S. Handbook on the Physics and Chemistry of Rare-Earths (Elsevier B. V., Amsterdam), 169-281 (2014).

    Google Scholar

    [6] Ho W-J, Deng Y-J, Liu J-J, Feng S-K, Lin J-C et al. Photovoltaic performance characterization of textured silicon solar cells using luminescent down-shifting Eu-doped phosphor particles of various dimensions. Materials10, 21 (2017). doi: 10.3390/ma10010021

    CrossRef Google Scholar

    [7] Ho W-J, You B-J, Liu J-J, Bai W-B, Syu H-J et al. Photovoltaic performance enhancement of silicon solar cells based on combined ratios of three species of Europium-doped phosphors. Materials 11, 845 (2018). doi: 10.3390/ma11050845

    CrossRef Google Scholar

    [8] Ho W-J, Feng S-K, Liu J-J, Yang Y-C, Ho C-H. Improving photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects. Appl Surf Sci 439, 868-875 (2018). doi: 10.1016/j.apsusc.2017.12.232

    CrossRef Google Scholar

    [9] Klampaftis E, Ross D, McIntosh K R, Richards B S. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol Energy Mater Sol Cells 93, 1182-1194 (2009). doi: 10.1016/j.solmat.2009.02.020

    CrossRef Google Scholar

    [10] Klampaftis E, Richards B S. Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog Photovoltaics Res Appl 19, 345-351 (2011). doi: 10.1002/pip.1019

    CrossRef Google Scholar

    [11] Kataoka H, Omagari S, Nakanishi T, Hasegawa Y. EVA thin film with thermo- and moisture-stable luminescent copolymer beads composed of Eu(Ⅲ) complexes for improvement of energy conversion efficiency on silicon solar cell. Opt Mater42, 411-416 (2015). doi: 10.1016/j.optmat.2015.01.038

    CrossRef Google Scholar

    [12] Ho W-J, Shen Y-T, Liu J-J, You B-J, Ho C-H et al. Enhancing photovoltaic performance using broadband luminescent down-shifting by combining multiple species of Eu-soped silicate phosphors. Nanomaterials 7, 340 (2017). doi: 10.3390/nano7100340

    CrossRef Google Scholar

    [13] Liu J, Wang K, Zheng W, Huang W, Li C H et al. Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. Prog Photovoltaics 21, 668-675 (2013). doi: 10.1002/pip.1251

    CrossRef Google Scholar

    [14] Monzón-Hierro T, Sanchiz J, González-Pérez S, González-Díaz B, Holinski S et al. A new cost-effective polymeric film containing an Eu(Ⅲ) complex acting as UV protector and down-converter for Si-based solar cells and modules.Sol Energy Mater Sol Cells 136, 187-192 (2015). doi: 10.1016/j.solmat.2015.01.020

    CrossRef Google Scholar

    [15] Le Donne A, Acciarri M, Narducci D, Marchionna S, Binetti S. Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency. Prog Photovoltaics 17, 519-525 (2011).

    Google Scholar

    [16] Le Donne A, Dilda M, Crippa M, Acciarri M, Binetti S. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency. Opt Mater 33, 1012-1014 (2011). doi: 10.1016/j.optmat.2010.10.005

    CrossRef Google Scholar

    [17] González-Pérez S, Sanchiz J, González-Díaz B, Holinski S, Borchert D et al. Luminescent polymeric film containing an Eu(Ⅲ) complex acting as UV protector and down-converter for Si-based solar cells and modules. Surf Coatings Technol 271, 106-111 (2015). doi: 10.1016/j.surfcoat.2014.12.074

    CrossRef Google Scholar

    [18] Kin E, Fukuda T, Yamauchi S, Honda Z, Ohara H et al. Thermal stability of europium(Ⅲ) chelate encapsulated by sol-gel glass. J Alloys Compd 480, 908-911 (2009). doi: 10.1016/j.jallcom.2009.02.063

    CrossRef Google Scholar

    [19] Fix T, Nonat A, Imbert D, Di Pietro S, Mazzanti M et al. Enhancement of silicon solar cells by downshifting with Eu and Tb coordination complexes. Prog Photovoltaics Res Appl 24, 1251-1260 (2016). doi: 10.1002/pip.v24.9

    CrossRef Google Scholar

    [20] Yang Y, Zhang S. Study of lanthanide complexes with salicylic acid by photoacoustic and fluorescence spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 60, 2065-2069 (2004). doi: 10.1016/j.saa.2003.11.005

    CrossRef Google Scholar

    [21] Wu R, Zhao H, Su Q. Photoacoustic and fluorescence studies of silica gels doped with rare earth salicylic acid complexes. J Non-Cryst Solids 278, 223-227 (2000). doi: 10.1016/S0022-3093(00)00309-4

    CrossRef Google Scholar

    [22] Misra V, Mishra H. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer. J Chem Phys 128, 244701 (2008). doi: 10.1063/1.2918284

    CrossRef Google Scholar

    [23] Li S W, Song H W, Li W L, Ren X G, Lu S Z et al. Improved photoluminescence properties of ternary terbium complexes in mesoporous molecule sieves. J Phys Chem B 110, 23164-23169 (2006). doi: 10.1021/jp064509d

    CrossRef Google Scholar

    [24] Fan X, Wang Z, Wang M. In situ synthesis kinetics of salicylicscid terbium complexes in sol-gel derived host materials. J Sol-Gel Sci Technol 30, 95-99 (2004). doi: 10.1023/B:JSST.0000034697.17767.96

    CrossRef Google Scholar

    [25] de Zea Bermudez V, Carlos L D, Alcácer L. Sol-gel derived urea cross-linked organically modified silicates. 1. Room temperature mid-infrared spectra. Chem Mater 11, 569-580 (1999). doi: 10.1021/cm980372v

    CrossRef Google Scholar

    [26] Molina C, Dahmouche K, Messaddeq Y, Ribeiro S J L, Silva M A P et al. Enhanced emission from Eu(Ⅲ) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic-inorganic hybrids. J Lumin 104, 93-101 (2003). doi: 10.1016/S0022-2313(02)00684-1

    CrossRef Google Scholar

    [27] Correia S F H, Lima P P, Pecoraro E, Ribeiro S J L, André P S et al. Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics. Prog Photovoltaics Res Appl24, 1178-1193 (2016). doi: 10.1002/pip.v24.9

    CrossRef Google Scholar

    [28] Correia S F H, Frias A R, Fu L, Rondão R, Pecoraro E et al. Large-area tunable visible-to-near-infrared luminescent solar concentrators. Adv Sustain Syst 2, 1800002 (2018). doi: 10.1002/adsu.v2.6

    CrossRef Google Scholar

    [29] Correia S F H, Lima P P, André P S, Ferreira R A S, Carlos L D. High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Sol Energy Mater Sol Cells 138, 51-57 (2015). doi: 10.1016/j.solmat.2015.02.032

    CrossRef Google Scholar

    [30] Freitas V T, Lima P P, Ferreira R A S, Pecoraro E, Fernandes M et al. Luminescent urea cross-linked tripodal siloxane-based hybrids. J Sol-Gel Sci Technol 65, 83-92 (2013). doi: 10.1007/s10971-012-2770-2

    CrossRef Google Scholar

    [31] Carlos L D, de Zea Bermudez V, Ferreira R A S, Marques L, Assunção M. Sol-gel derived urea cross-linked organically modified silicates. 2. Blue-light emission.Chem Mater 11, 581-588 (1999). doi: 10.1021/cm980373n

    CrossRef Google Scholar

    [32] Nolasco M M, Vaz P M, Freitas V T, Lima P P, André P S et al. Engineering highly efficient Eu(Ⅲ)-based tri-ureasil hybrids toward luminescent solar concentrators. J Mater Chem A 1, 7339-7350 (2013). doi: 10.1039/c3ta11463e

    CrossRef Google Scholar

    [33] Kai J A, Felinto M C F C, Nunes L A O, Malta O L, Brito H F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-beta-diketonate complexes. J Mater Chem 21, 3796-3802 (2011). doi: 10.1039/c0jm03474f

    CrossRef Google Scholar

    [34] Fernandes M, de Zea Bermudez V, Ferreira R A S, Carlos L D, Charas A et al. Highly photostable luminescent poly (E-caprolactone) siloxane biohybrids doped with europium complexes. Chem Mater 19, 3892-3901 (2007). doi: 10.1021/cm062832n

    CrossRef Google Scholar

    [35] Reisfeld R, Shamrakov D, Jorgensen C. Photostable solar concentrators based on fluorescent glass-films. Sol Energy Mater Sol Cells 33, 417-427 (1994). doi: 10.1016/0927-0248(94)90002-7

    CrossRef Google Scholar

    [36] Rondão R, Frias A R, Correia S F H, Fu L, de Zea Bermudez V et al. High-performance near-infrared luminescent solar concentrators. ACS Appl Mater Interfaces 9, 12540-12546 (2017). doi: 10.1021/acsami.7b02700

    CrossRef Google Scholar

    [37] Gai Y, Jiang F, Chen L, Wu M, Su K et al. Europium and terbium coordination polymers assembled from hexacarboxylate ligands: structures and luminescent properties. Cryst Growth Des 14, 1010-1017 (2014). doi: 10.1021/cg401452p

    CrossRef Google Scholar

    [38] Graffion J, Cojocariu A M, Cattoeen X, Ferreira R A S, Fernandes V R et al. Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. J Mater Chem 22, 13279-13285 (2012). doi: 10.1039/c2jm31289a

    CrossRef Google Scholar

    [39] Lima P P, Ferreira R A S, Alves Junior S, Malta O L, Carlos L D. Terbium(Ⅲ)-containing organic-inorganic hybrids synthesized through hydrochloric acid catalysis. J Photochem Photobiol A-Chemistry 201, 214-221 (2009). doi: 10.1016/j.jphotochem.2008.10.021

    CrossRef Google Scholar

    [40] Mahadik D B, Lakshmi R V, Barshilia H C. High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications. Sol Energy Mater Sol Cells 140, 61-68 (2015). doi: 10.1016/j.solmat.2015.03.023

    CrossRef Google Scholar

    [41] Preston C, Xu Y L, Han X G, Munday J N, Hu L B. Optical haze of transparent and conductive silver nanowire films. Nano Res 6, 461-468 (2013). doi: 10.1007/s12274-013-0323-9

    CrossRef Google Scholar

    [42] Griffini G, Bella F, Nisic F, Dragonetti C, Roberto D et al. Multifunctional luminescent down-shifting fluoropolymer coatings: a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells. Adv Energy Mater 5, 1401312 (2015). doi: 10.1002/aenm.201401312

    CrossRef Google Scholar

    [43] Bin Hung W, Chen J Y, Sung K W, Chen T M. Enhanced conversion efficiency of crystalline Si solar cells via luminescent down-shifting using Ba2SiO4:Eu2+ phosphor. J Ceram Process Res 15, 157-161 (2014).

    Google Scholar

    [44] Chen J-Y, Huang C K, Hung W B, Sun K W, Chen T M. Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence. Sol Energy Mater Sol Cells 120, 168-174 (2014). doi: 10.1016/j.solmat.2013.08.039

    CrossRef Google Scholar

    [45] Liu J F, Yao Q H, Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells. Appl Phys Lett 88, 173119 (2006). doi: 10.1063/1.2198825

    CrossRef Google Scholar

  • Supplementary information for Lanthanide-based downshifting layers tested in a solar car race
    video.mp4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint