Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019). doi: 10.29026/oea.2019.190007
Citation: Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019). doi: 10.29026/oea.2019.190007

Review Open Access

Optofluidics: the interaction between light and flowing liquids in integrated devices

More Information
  • Optofluidics is a rising technology that combines microfluidics and optics. Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips. The fluid flow in the on-chip devices is reconfigurable, non-uniform and usually transports substances being analyzed, offering a new idea in the accurate manipulation of lights and biochemical samples. In this paper, we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion, heat conduction, centrifugation effect, light-matter interaction and others. By understanding the novel phenomena due to the interaction of light and flowing liquids, quantities of tunable and reconfigurable optofluidic devices such as waveguides, lenses, and lasers are introduced. Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.
  • 加载中
  • [1] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381-386 (2006). doi: 10.1038/nature05060

    CrossRef Google Scholar

    [2] Tang S K Y, Stan C A, Whitesides G M. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 8, 395-401 (2008). doi: 10.1039/b717037h

    CrossRef Google Scholar

    [3] Lim J M, Kim S H, Yang S M. Liquid-liquid fluorescent waveguides using microfluidic-drifting-induced hydrodynamic focusing. Microfluid Nanofluid 10, 211-217 (2011). doi: 10.1007/s10404-010-0649-5

    CrossRef Google Scholar

    [4] Chung A J, Erickson D. Optofluidic waveguides for reconfigurable photonic systems. Opt Express 19, 8602-8609 (2011). doi: 10.1364/OE.19.008602

    CrossRef Google Scholar

    [5] Kiraz A, Chen Q S, Fan X D. Optofluidic lasers with aqueous quantum dots. ACS Photonics 2, 707-713 (2015). doi: 10.1021/acsphotonics.5b00211

    CrossRef Google Scholar

    [6] Chen Q S, Kiraz A, Fan X D. Optofluidic FRET lasers using aqueous quantum dots as donors. Lab Chip 16, 353-359 (2016). doi: 10.1039/C5LC01004G

    CrossRef Google Scholar

    [7] Chen Y C, Chen Q S, Fan X D. Optofluidic chlorophyll lasers. Lab Chip 16, 2228-2235 (2016). doi: 10.1039/C6LC00512H

    CrossRef Google Scholar

    [8] Dong L, Agarwal A K, Beebe D J, Jiang H R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006). doi: 10.1038/nature05024

    CrossRef Google Scholar

    [9] Seow Y C, Lim S P, Lee H P. Optofluidic variable-focus lenses for light manipulation. Lab Chip 12, 3810-3815 (2012). doi: 10.1039/c2lc40415j

    CrossRef Google Scholar

    [10] Groisman A, Zamek S, Campbell K, Pang L, Levy U et al. Optofluidic 1×4 switch. Opt Express 16, 13499-13508 (2008). doi: 10.1364/OE.16.013499

    CrossRef Google Scholar

    [11] Yang A H J, Erickson D. Optofluidic ring resonator switch for optical particle transport. Lab Chip 10, 769-774 (2010). doi: 10.1039/b920006a

    CrossRef Google Scholar

    [12] Song W Z, Psaltis D. Electrically tunable optofluidic light switch for reconfigurable solar lighting. Lab Chip 13, 2708-2713 (2013). doi: 10.1039/c3lc50204j

    CrossRef Google Scholar

    [13] Seow Y C, Lim S P, Lee H P. Tunable optofluidic switch via hydrodynamic control of laminar flow rate. Appl Phys Lett 95, 114105 (2009). doi: 10.1063/1.3229887

    CrossRef Google Scholar

    [14] Zhuang G S, Jensen T G, Kutter J P. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system. Electrophoresis 33, 1715-1722 (2012). doi: 10.1002/elps.201100674

    CrossRef Google Scholar

    [15] Yang Y, Liu A Q, Lei L, Chin L K, Ohl C D et al. A tunable 3D optofluidic waveguide dye laser via two centrifugal dean flow streams. Lab Chip 11, 3182-3187 (2011). doi: 10.1039/c1lc20435a

    CrossRef Google Scholar

    [16] Fei P, He Z, Zheng C H, Chen T, Men Y F et al. Discretely tunable optofluidic compound microlenses. Lab Chip 11, 2835-2841 (2011). doi: 10.1039/c1lc20425d

    CrossRef Google Scholar

    [17] Zhao H T, Yang Y, Chin L K, Chen H F, Zhu W M et al. Optofluidic lens with low spherical and low field curvature aberrations. Lab Chip 16, 1617-1624 (2016). doi: 10.1039/C6LC00295A

    CrossRef Google Scholar

    [18] Leake K D, Phillips B S, Yuzvinsky T D, Hawkins A R, Schmidt H. Optical particle sorting on an optofluidic chip. Opt Express 21, 32605-32610 (2013). doi: 10.1364/OE.21.032605

    CrossRef Google Scholar

    [19] Kühn S, Measor P, Lunt E J, Phillips B S, Deamer D W et al. Loss-based optical trap for on-chip particle analysis. Lab Chip 9, 2212-2216 (2009). doi: 10.1039/b900555b

    CrossRef Google Scholar

    [20] Shi Y Z, Xiong S, Chin L K, Zhang J B, Ser W et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4, eaao0773 (2018). doi: 10.1126/sciadv.aao0773

    CrossRef Google Scholar

    [21] Fan X D, White I M, Shopova S I, Zhu H Y, Suter J D et al. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620, 8-26 (2008). doi: 10.1016/j.aca.2008.05.022

    CrossRef Google Scholar

    [22] Perumal M, Raju K G R. Approximate convection-diffusion equations. J Hydrol Eng 4, 160-164 (1999). doi: 10.1061/(ASCE)1084-0699(1999)4:2(160)

    CrossRef Google Scholar

    [23] Sudarsan A P, Ugaz V M. Multivortex micromixing. Proc Natl Acad Sci USA 103, 7228-7233 (2006). doi: 10.1073/pnas.0507976103

    CrossRef Google Scholar

    [24] Wolfe D B, Conroy R S, Garstecki P, Mayers B T, Fischbach M A et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101, 12434-12438 (2004). doi: 10.1073/pnas.0404423101

    CrossRef Google Scholar

    [25] Mayers B T, Vezenov D V, Vullev V I, Whitesides G M. Arrays and cascades of fluorescent liquid-liquid waveguides: broadband light sources for spectroscopy in microchannels. Anal Chem 77, 1310-1316 (2005). doi: 10.1021/ac048692n

    CrossRef Google Scholar

    [26] Li X C, Wu J, Liu A Q, Li Z G, Soew Y C et al. A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip. Appl Phys Lett 93, 193901(2008). doi: 10.1063/1.2988648

    CrossRef Google Scholar

    [27] Li L, Zhu X Q, Liang L, Zuo Y F, Xu Y S et al. Switchable 3D optofluidic y-branch waveguides tuned by dean flows. Sci Rep 6, 38338 (2016). doi: 10.1038/srep38338

    CrossRef Google Scholar

    [28] Fang C L, Dai B, Xu Q, Zhuo R, Wang Q et al. Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. Opt Express 25, 888-897 (2017). doi: 10.1364/OE.25.000888

    CrossRef Google Scholar

    [29] Mao X L, Waldeisen J R, Juluri B K, Huang T J. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303-1308 (2007). doi: 10.1039/b708863a

    CrossRef Google Scholar

    [30] Rosenauer M, Vellekoop M J. 3D fluidic lens shaping—a multiconvex hydrodynamically adjustable optofluidic microlens. Lab Chip 9, 1040-1042 (2009). doi: 10.1039/b822981c

    CrossRef Google Scholar

    [31] Liang L, Zhu X Q, Liu H L, Shi Y, Yang Y. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using dean flow. Lab Chip 17, 3258-3263 (2017). doi: 10.1039/C7LC00598A

    CrossRef Google Scholar

    [32] Huang H, Mao X L, Lin S C S, Kiraly B, Huang Y P et al. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. Lab Chip 10, 2387-2393 (2010). doi: 10.1039/c005071g

    CrossRef Google Scholar

    [33] Shi Y, Liang L, Zhu X Q, Zhang X M, Yang Y. Tunable self-imaging effect using hybrid optofluidic waveguides. Lab Chip 15, 4398-4403 (2015). doi: 10.1039/C5LC01066G

    CrossRef Google Scholar

    [34] Zhao H T, Zhang Y, Liu P Y, Yap P H, Ser W et al. Chemical reaction monitoring via the light focusing in optofluidic waveguides. Sens Actuators B Chem 280, 16-23 (2019). doi: 10.1016/j.snb.2018.10.048

    CrossRef Google Scholar

    [35] Tang S K Y, Mayers B T, Vezenov D V, Whitesides G M. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88, 061112 (2006). doi: 10.1063/1.2170435

    CrossRef Google Scholar

    [36] Chen Q M, Jian A Q, Li Z H, Zhang X M. Optofluidic tunable lenses using laser-induced thermal gradient. Lab Chip 16, 104-111 (2016). doi: 10.1039/C5LC01163A

    CrossRef Google Scholar

    [37] Liu H L, Shi Y, Liang L, Li L, Guo S S et al. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab Chip 17, 1280-1286 (2017). doi: 10.1039/C7LC00078B

    CrossRef Google Scholar

    [38] Roberts D A, Kundtz N, Smith D R. Optical lens compression via transformation optics. Opt Express 17, 16535-16542 (2009). doi: 10.1364/OE.17.016535

    CrossRef Google Scholar

    [39] Yang Y, Liu A Q, Chin L K, Zhang X M, Tsai D P et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Nat Commun 3, 651 (2012). doi: 10.1038/ncomms1662

    CrossRef Google Scholar

    [40] Liu H L, Zhu X Q, Liang L, Zhang X M, Yang Y. Tunable transformation optical waveguide bends in liquid. Optica 4, 839-846 (2017). doi: 10.1364/OPTICA.4.000839

    CrossRef Google Scholar

    [41] Zhu X Q, Liang L, Zuo Y F, Zhang X M, Yang Y. Tunable visible cloaking using liquid diffusion. Laser Photonics Rev 11, 1700066 (2017). doi: 10.1002/lpor.201700066

    CrossRef Google Scholar

    [42] Yang Y, Chin L K, Tsai J M, Tsai D P, Zheludev N I et al. Transformation optofluidics for large-angle light bending and tuning. Lab Chip 12, 3785-3790 (2012). doi: 10.1039/c2lc40442g

    CrossRef Google Scholar

    [43] Mao X L, Waldeisen J R, Huang T J. "Microfluidic drifting"—implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7, 1260-1262 (2007). doi: 10.1039/b711155j

    CrossRef Google Scholar

    [44] Wu Z G, Nguyen N T. Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B Chem 107, 965-974 (2005). doi: 10.1016/j.snb.2004.11.014

    CrossRef Google Scholar

    [45] Cho S H, Godin J M, Chen C H, Qiao W, Lee H et al. Review article: recent advancements in optofluidic flow cytometer. Biomicrofluidics 4, 043001 (2010). doi: 10.1063/1.3511706

    CrossRef Google Scholar

    [46] Mao X L, Nawaz A A, Lin S C S, Lapsley M I, Zhao Y H et al. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing. Biomicrofluidics 6, 024113 (2012). doi: 10.1063/1.3701566

    CrossRef Google Scholar

    [47] Yu J Q, Huang W, Chin L K, Lei L, Lin Z P et al. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab Chip 14, 3519-3524 (2014). doi: 10.1039/C4LC00042K

    CrossRef Google Scholar

    [48] Wang J, Fei B, Geahlen R L, Lu C. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab Chip 10, 2673-2679 (2010). doi: 10.1039/c0lc00131g

    CrossRef Google Scholar

    [49] Liang L, Zuo Y F, Wu W, Zhu X Q, Yang Y. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids. Lab Chip 16, 3007-3014 (2016). doi: 10.1039/C6LC00078A

    CrossRef Google Scholar

    [50] Liang L, Jin Y X, Zhu X Q, Zhou F L, Yang Y. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection. Lab Chip 18, 1422-1429 (2018). doi: 10.1039/C8LC00088C

    CrossRef Google Scholar

    [51] Lei C, Kobayashi H, Wu Y, Li M, Isozaki A et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 13, 1603-1631 (2018). doi: 10.1038/s41596-018-0008-7

    CrossRef Google Scholar

    [52] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288-290 (1986). doi: 10.1364/OL.11.000288

    CrossRef Google Scholar

    [53] Svoboda K, Block S M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23, 247-285 (1994). doi: 10.1146/annurev.bb.23.060194.001335

    CrossRef Google Scholar

    [54] Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9, 703-710 (2007). doi: 10.1007/s10544-007-9079-x

    CrossRef Google Scholar

    [55] Ebert S, Travis K, Lincoln B, Guck J. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt Express 15, 15493-15499 (2007). doi: 10.1364/OE.15.015493

    CrossRef Google Scholar

    [56] Grier D G. A revolution in optical manipulation. Nature 424, 810-816 (2003). doi: 10.1038/nature01935

    CrossRef Google Scholar

    [57] Moffitt J R, Chemla Y R, Smith S B, Bustamante C. Recent advances in optical tweezers. Annu Rev Biochem 77, 205-228 (2008). doi: 10.1146/annurev.biochem.77.043007.090225

    CrossRef Google Scholar

    [58] MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice. Nature 426, 421-424. (2003). doi: 10.1038/nature02144

    CrossRef Google Scholar

    [59] Hart S J, Terray A V. Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl Phys Lett 83, 5316-5318 (2003). doi: 10.1063/1.1635984

    CrossRef Google Scholar

    [60] Yang A H J, Moore S D, Schmidt B S, Klug M, Lipson M et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71-75 (2009). doi: 10.1038/nature07593

    CrossRef Google Scholar

    [61] Wu W, Zhu X Q, Zuo Y F, Liang L, Zhang S P et al. Precise sorting of gold nanoparticles in a flowing system. ACS Photonics 3, 2497-2504 (2016). doi: 10.1021/acsphotonics.6b00737

    CrossRef Google Scholar

    [62] Shi Y Z, Xiong S, Chin L K, Yang Y, Zhang J B et al. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab Chip 17, 2443-2450 (2017). doi: 10.1039/C7LC00484B

    CrossRef Google Scholar

    [63] Shi Y Z, Xiong S, Zhang Y, Chin L K, Chen Y Y et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9, 815 (2018) doi: 10.1038/s41467-018-03156-5

    CrossRef Google Scholar

    [64] Li P, Mao Z M, Peng Z L, Zhou L L, Chen Y C et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA 112, 4970-4975 (2015). doi: 10.1073/pnas.1504484112

    CrossRef Google Scholar

    [65] Ding X Y, Peng Z L, Lin S C S, Geri M, Li S X et al. Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA 111, 12992-12997 (2014). doi: 10.1073/pnas.1413325111

    CrossRef Google Scholar

    [66] Wu M X, Chen K J, Yang S J, Wang Z Y, Huang P H et al. High-throughput cell focusing and separation via acoustofluidic tweezers. Lab Chip 18, 3003-3010 (2018). doi: 10.1039/C8LC00434J

    CrossRef Google Scholar

    [67] Shi J J, Ahmed D, Mao X L, Lin S C S, Lawit A et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890-2895 (2009). doi: 10.1039/b910595f

    CrossRef Google Scholar

    [68] Li S X, Ma F, Bachman H, Cameron C E, Zeng X Q et al. Acoustofluidic bacteria separation. J Micromech Microeng 27, 015031 (2017). doi: 10.1088/1361-6439/27/1/015031

    CrossRef Google Scholar

    [69] Guo F, Mao Z M, Chen Y C, Xie Z W, Lata J P et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci USA 113, 1522-1527 (2016). doi: 10.1073/pnas.1524813113

    CrossRef Google Scholar

    [70] Hu X J, Liu H L, Jin Y X, Liang L, Zhu D M et al. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip. Lab Chip 18, 3405-3412 (2018). doi: 10.1039/C8LC00911B

    CrossRef Google Scholar

    [71] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5, 591-597 (2011). doi: 10.1038/nphoton.2011.206

    CrossRef Google Scholar

    [72] Vahala K J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939

    CrossRef Google Scholar

    [73] Song W Z, Zhang X M, Liu A Q, Lim C S, Yap P H et al. Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity. Appl Phys Lett 89, 203901 (2006). doi: 10.1063/1.2387965

    CrossRef Google Scholar

    [74] Chin L K, Liu A Q, Lim C S, Zhang X M, Ng J H et al. Differential single living cell refractometry using grating resonant cavity with optical trap. Appl Phys Lett 91, 243901 (2007). doi: 10.1063/1.2823610

    CrossRef Google Scholar

    [75] Legiret F E, Sieben V J, Woodward E M S, Abi Kaed Bey S K, Mowlem M C et al. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 116, 382-387 (2013). doi: 10.1016/j.talanta.2013.05.004

    CrossRef Google Scholar

    [76] Beaton A D, Cardwell C L, Thomas R S, Sieben V J, Legiret F E et al. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ Sci Technol 46, 9548-9556 (2012). doi: 10.1021/es300419u

    CrossRef Google Scholar

    [77] Zhu J M, Shi Y, Zhu X Q, Yang Y, Jiang F H et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator. Lab Chip 17, 4025-4030 (2017). doi: 10.1039/C7LC01016H

    CrossRef Google Scholar

    [78] Shi Y, Liu H L, Zhu X Q, Zhu J M, Zuo Y F et al. Optofluidic differential colorimetry for rapid nitrite determination. Lab Chip 18, 2994-3002 (2018). doi: 10.1039/C8LC00690C

    CrossRef Google Scholar

    [79] Chauvin D, Bell J, Leray I, Ledoux-Rak I, Nguyen C T. Label-free optofluidic sensor based on polymeric microresonator for the detection of cadmium ions in tap water. Sens Actuators B Chem 280, 77-85 (2019). doi: 10.1016/j.snb.2018.10.053

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint