Citation: | Zhu J M, Zhu X Q, Zuo Y F, Hu X J, Shi Y et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019). doi: 10.29026/oea.2019.190007 |
[1] | Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381-386 (2006). doi: 10.1038/nature05060 |
[2] | Tang S K Y, Stan C A, Whitesides G M. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 8, 395-401 (2008). doi: 10.1039/b717037h |
[3] | Lim J M, Kim S H, Yang S M. Liquid-liquid fluorescent waveguides using microfluidic-drifting-induced hydrodynamic focusing. Microfluid Nanofluid 10, 211-217 (2011). doi: 10.1007/s10404-010-0649-5 |
[4] | Chung A J, Erickson D. Optofluidic waveguides for reconfigurable photonic systems. Opt Express 19, 8602-8609 (2011). doi: 10.1364/OE.19.008602 |
[5] | Kiraz A, Chen Q S, Fan X D. Optofluidic lasers with aqueous quantum dots. ACS Photonics 2, 707-713 (2015). doi: 10.1021/acsphotonics.5b00211 |
[6] | Chen Q S, Kiraz A, Fan X D. Optofluidic FRET lasers using aqueous quantum dots as donors. Lab Chip 16, 353-359 (2016). doi: 10.1039/C5LC01004G |
[7] | Chen Y C, Chen Q S, Fan X D. Optofluidic chlorophyll lasers. Lab Chip 16, 2228-2235 (2016). doi: 10.1039/C6LC00512H |
[8] | Dong L, Agarwal A K, Beebe D J, Jiang H R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006). doi: 10.1038/nature05024 |
[9] | Seow Y C, Lim S P, Lee H P. Optofluidic variable-focus lenses for light manipulation. Lab Chip 12, 3810-3815 (2012). doi: 10.1039/c2lc40415j |
[10] | Groisman A, Zamek S, Campbell K, Pang L, Levy U et al. Optofluidic 1×4 switch. Opt Express 16, 13499-13508 (2008). doi: 10.1364/OE.16.013499 |
[11] | Yang A H J, Erickson D. Optofluidic ring resonator switch for optical particle transport. Lab Chip 10, 769-774 (2010). doi: 10.1039/b920006a |
[12] | Song W Z, Psaltis D. Electrically tunable optofluidic light switch for reconfigurable solar lighting. Lab Chip 13, 2708-2713 (2013). doi: 10.1039/c3lc50204j |
[13] | Seow Y C, Lim S P, Lee H P. Tunable optofluidic switch via hydrodynamic control of laminar flow rate. Appl Phys Lett 95, 114105 (2009). doi: 10.1063/1.3229887 |
[14] | Zhuang G S, Jensen T G, Kutter J P. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system. Electrophoresis 33, 1715-1722 (2012). doi: 10.1002/elps.201100674 |
[15] | Yang Y, Liu A Q, Lei L, Chin L K, Ohl C D et al. A tunable 3D optofluidic waveguide dye laser via two centrifugal dean flow streams. Lab Chip 11, 3182-3187 (2011). doi: 10.1039/c1lc20435a |
[16] | Fei P, He Z, Zheng C H, Chen T, Men Y F et al. Discretely tunable optofluidic compound microlenses. Lab Chip 11, 2835-2841 (2011). doi: 10.1039/c1lc20425d |
[17] | Zhao H T, Yang Y, Chin L K, Chen H F, Zhu W M et al. Optofluidic lens with low spherical and low field curvature aberrations. Lab Chip 16, 1617-1624 (2016). doi: 10.1039/C6LC00295A |
[18] | Leake K D, Phillips B S, Yuzvinsky T D, Hawkins A R, Schmidt H. Optical particle sorting on an optofluidic chip. Opt Express 21, 32605-32610 (2013). doi: 10.1364/OE.21.032605 |
[19] | Kühn S, Measor P, Lunt E J, Phillips B S, Deamer D W et al. Loss-based optical trap for on-chip particle analysis. Lab Chip 9, 2212-2216 (2009). doi: 10.1039/b900555b |
[20] | Shi Y Z, Xiong S, Chin L K, Zhang J B, Ser W et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4, eaao0773 (2018). doi: 10.1126/sciadv.aao0773 |
[21] | Fan X D, White I M, Shopova S I, Zhu H Y, Suter J D et al. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620, 8-26 (2008). doi: 10.1016/j.aca.2008.05.022 |
[22] | Perumal M, Raju K G R. Approximate convection-diffusion equations. J Hydrol Eng 4, 160-164 (1999). doi: 10.1061/(ASCE)1084-0699(1999)4:2(160) |
[23] | Sudarsan A P, Ugaz V M. Multivortex micromixing. Proc Natl Acad Sci USA 103, 7228-7233 (2006). doi: 10.1073/pnas.0507976103 |
[24] | Wolfe D B, Conroy R S, Garstecki P, Mayers B T, Fischbach M A et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101, 12434-12438 (2004). doi: 10.1073/pnas.0404423101 |
[25] | Mayers B T, Vezenov D V, Vullev V I, Whitesides G M. Arrays and cascades of fluorescent liquid-liquid waveguides: broadband light sources for spectroscopy in microchannels. Anal Chem 77, 1310-1316 (2005). doi: 10.1021/ac048692n |
[26] | Li X C, Wu J, Liu A Q, Li Z G, Soew Y C et al. A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip. Appl Phys Lett 93, 193901(2008). doi: 10.1063/1.2988648 |
[27] | Li L, Zhu X Q, Liang L, Zuo Y F, Xu Y S et al. Switchable 3D optofluidic y-branch waveguides tuned by dean flows. Sci Rep 6, 38338 (2016). doi: 10.1038/srep38338 |
[28] | Fang C L, Dai B, Xu Q, Zhuo R, Wang Q et al. Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. Opt Express 25, 888-897 (2017). doi: 10.1364/OE.25.000888 |
[29] | Mao X L, Waldeisen J R, Juluri B K, Huang T J. Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7, 1303-1308 (2007). doi: 10.1039/b708863a |
[30] | Rosenauer M, Vellekoop M J. 3D fluidic lens shaping—a multiconvex hydrodynamically adjustable optofluidic microlens. Lab Chip 9, 1040-1042 (2009). doi: 10.1039/b822981c |
[31] | Liang L, Zhu X Q, Liu H L, Shi Y, Yang Y. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using dean flow. Lab Chip 17, 3258-3263 (2017). doi: 10.1039/C7LC00598A |
[32] | Huang H, Mao X L, Lin S C S, Kiraly B, Huang Y P et al. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. Lab Chip 10, 2387-2393 (2010). doi: 10.1039/c005071g |
[33] | Shi Y, Liang L, Zhu X Q, Zhang X M, Yang Y. Tunable self-imaging effect using hybrid optofluidic waveguides. Lab Chip 15, 4398-4403 (2015). doi: 10.1039/C5LC01066G |
[34] | Zhao H T, Zhang Y, Liu P Y, Yap P H, Ser W et al. Chemical reaction monitoring via the light focusing in optofluidic waveguides. Sens Actuators B Chem 280, 16-23 (2019). doi: 10.1016/j.snb.2018.10.048 |
[35] | Tang S K Y, Mayers B T, Vezenov D V, Whitesides G M. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88, 061112 (2006). doi: 10.1063/1.2170435 |
[36] | Chen Q M, Jian A Q, Li Z H, Zhang X M. Optofluidic tunable lenses using laser-induced thermal gradient. Lab Chip 16, 104-111 (2016). doi: 10.1039/C5LC01163A |
[37] | Liu H L, Shi Y, Liang L, Li L, Guo S S et al. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab Chip 17, 1280-1286 (2017). doi: 10.1039/C7LC00078B |
[38] | Roberts D A, Kundtz N, Smith D R. Optical lens compression via transformation optics. Opt Express 17, 16535-16542 (2009). doi: 10.1364/OE.17.016535 |
[39] | Yang Y, Liu A Q, Chin L K, Zhang X M, Tsai D P et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Nat Commun 3, 651 (2012). doi: 10.1038/ncomms1662 |
[40] | Liu H L, Zhu X Q, Liang L, Zhang X M, Yang Y. Tunable transformation optical waveguide bends in liquid. Optica 4, 839-846 (2017). doi: 10.1364/OPTICA.4.000839 |
[41] | Zhu X Q, Liang L, Zuo Y F, Zhang X M, Yang Y. Tunable visible cloaking using liquid diffusion. Laser Photonics Rev 11, 1700066 (2017). doi: 10.1002/lpor.201700066 |
[42] | Yang Y, Chin L K, Tsai J M, Tsai D P, Zheludev N I et al. Transformation optofluidics for large-angle light bending and tuning. Lab Chip 12, 3785-3790 (2012). doi: 10.1039/c2lc40442g |
[43] | Mao X L, Waldeisen J R, Huang T J. "Microfluidic drifting"—implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7, 1260-1262 (2007). doi: 10.1039/b711155j |
[44] | Wu Z G, Nguyen N T. Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B Chem 107, 965-974 (2005). doi: 10.1016/j.snb.2004.11.014 |
[45] | Cho S H, Godin J M, Chen C H, Qiao W, Lee H et al. Review article: recent advancements in optofluidic flow cytometer. Biomicrofluidics 4, 043001 (2010). doi: 10.1063/1.3511706 |
[46] | Mao X L, Nawaz A A, Lin S C S, Lapsley M I, Zhao Y H et al. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing. Biomicrofluidics 6, 024113 (2012). doi: 10.1063/1.3701566 |
[47] | Yu J Q, Huang W, Chin L K, Lei L, Lin Z P et al. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab Chip 14, 3519-3524 (2014). doi: 10.1039/C4LC00042K |
[48] | Wang J, Fei B, Geahlen R L, Lu C. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab Chip 10, 2673-2679 (2010). doi: 10.1039/c0lc00131g |
[49] | Liang L, Zuo Y F, Wu W, Zhu X Q, Yang Y. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids. Lab Chip 16, 3007-3014 (2016). doi: 10.1039/C6LC00078A |
[50] | Liang L, Jin Y X, Zhu X Q, Zhou F L, Yang Y. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection. Lab Chip 18, 1422-1429 (2018). doi: 10.1039/C8LC00088C |
[51] | Lei C, Kobayashi H, Wu Y, Li M, Isozaki A et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 13, 1603-1631 (2018). doi: 10.1038/s41596-018-0008-7 |
[52] | Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288-290 (1986). doi: 10.1364/OL.11.000288 |
[53] | Svoboda K, Block S M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23, 247-285 (1994). doi: 10.1146/annurev.bb.23.060194.001335 |
[54] | Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9, 703-710 (2007). doi: 10.1007/s10544-007-9079-x |
[55] | Ebert S, Travis K, Lincoln B, Guck J. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt Express 15, 15493-15499 (2007). doi: 10.1364/OE.15.015493 |
[56] | Grier D G. A revolution in optical manipulation. Nature 424, 810-816 (2003). doi: 10.1038/nature01935 |
[57] | Moffitt J R, Chemla Y R, Smith S B, Bustamante C. Recent advances in optical tweezers. Annu Rev Biochem 77, 205-228 (2008). doi: 10.1146/annurev.biochem.77.043007.090225 |
[58] | MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice. Nature 426, 421-424. (2003). doi: 10.1038/nature02144 |
[59] | Hart S J, Terray A V. Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl Phys Lett 83, 5316-5318 (2003). doi: 10.1063/1.1635984 |
[60] | Yang A H J, Moore S D, Schmidt B S, Klug M, Lipson M et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71-75 (2009). doi: 10.1038/nature07593 |
[61] | Wu W, Zhu X Q, Zuo Y F, Liang L, Zhang S P et al. Precise sorting of gold nanoparticles in a flowing system. ACS Photonics 3, 2497-2504 (2016). doi: 10.1021/acsphotonics.6b00737 |
[62] | Shi Y Z, Xiong S, Chin L K, Yang Y, Zhang J B et al. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab Chip 17, 2443-2450 (2017). doi: 10.1039/C7LC00484B |
[63] | Shi Y Z, Xiong S, Zhang Y, Chin L K, Chen Y Y et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9, 815 (2018) doi: 10.1038/s41467-018-03156-5 |
[64] | Li P, Mao Z M, Peng Z L, Zhou L L, Chen Y C et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA 112, 4970-4975 (2015). doi: 10.1073/pnas.1504484112 |
[65] | Ding X Y, Peng Z L, Lin S C S, Geri M, Li S X et al. Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA 111, 12992-12997 (2014). doi: 10.1073/pnas.1413325111 |
[66] | Wu M X, Chen K J, Yang S J, Wang Z Y, Huang P H et al. High-throughput cell focusing and separation via acoustofluidic tweezers. Lab Chip 18, 3003-3010 (2018). doi: 10.1039/C8LC00434J |
[67] | Shi J J, Ahmed D, Mao X L, Lin S C S, Lawit A et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890-2895 (2009). doi: 10.1039/b910595f |
[68] | Li S X, Ma F, Bachman H, Cameron C E, Zeng X Q et al. Acoustofluidic bacteria separation. J Micromech Microeng 27, 015031 (2017). doi: 10.1088/1361-6439/27/1/015031 |
[69] | Guo F, Mao Z M, Chen Y C, Xie Z W, Lata J P et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci USA 113, 1522-1527 (2016). doi: 10.1073/pnas.1524813113 |
[70] | Hu X J, Liu H L, Jin Y X, Liang L, Zhu D M et al. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip. Lab Chip 18, 3405-3412 (2018). doi: 10.1039/C8LC00911B |
[71] | Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5, 591-597 (2011). doi: 10.1038/nphoton.2011.206 |
[72] | Vahala K J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939 |
[73] | Song W Z, Zhang X M, Liu A Q, Lim C S, Yap P H et al. Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity. Appl Phys Lett 89, 203901 (2006). doi: 10.1063/1.2387965 |
[74] | Chin L K, Liu A Q, Lim C S, Zhang X M, Ng J H et al. Differential single living cell refractometry using grating resonant cavity with optical trap. Appl Phys Lett 91, 243901 (2007). doi: 10.1063/1.2823610 |
[75] | Legiret F E, Sieben V J, Woodward E M S, Abi Kaed Bey S K, Mowlem M C et al. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 116, 382-387 (2013). doi: 10.1016/j.talanta.2013.05.004 |
[76] | Beaton A D, Cardwell C L, Thomas R S, Sieben V J, Legiret F E et al. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ Sci Technol 46, 9548-9556 (2012). doi: 10.1021/es300419u |
[77] | Zhu J M, Shi Y, Zhu X Q, Yang Y, Jiang F H et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator. Lab Chip 17, 4025-4030 (2017). doi: 10.1039/C7LC01016H |
[78] | Shi Y, Liu H L, Zhu X Q, Zhu J M, Zuo Y F et al. Optofluidic differential colorimetry for rapid nitrite determination. Lab Chip 18, 2994-3002 (2018). doi: 10.1039/C8LC00690C |
[79] | Chauvin D, Bell J, Leray I, Ledoux-Rak I, Nguyen C T. Label-free optofluidic sensor based on polymeric microresonator for the detection of cadmium ions in tap water. Sens Actuators B Chem 280, 77-85 (2019). doi: 10.1016/j.snb.2018.10.053 |
The principle of optofluidic chip and two kinds of interaction between light and flowing liquids.
(a) The schematic of 3D liquid remodelability in a curved channel by centrifugal effect. (b) A 3D optofluidic dye laser. Figure reproduced from: (b) ref.15, The Royal Society of Chemistry.
(a) The schematic design of liquid GRIN lenses. (b) The GRIN lens by diffusion. (c) The GRIN lens by heat conduction. Figure reproduced from: (b) ref.32, The Royal Society of Chemistry; (c) ref.36, The Royal Society of Chemistry.
(a) (1) Light propagates in a straight way in homogeneous liquid medium. (2) Light bends in inhomogeneous liquid medium. (b) The schematic diagram and experimental images of optofluidic waveguide based on QCTO, which can focus light. (c) A QCTO optofluidic waveguide, bending light at 90°, 180°, and 270°. (d) A tunable liquid cloaking. Figure reproduced from: (b) ref.39, Macmillan Publishers Limited; (c) ref.40, Optical Society of America; (d) ref.41, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(a) The schematic of the on-chip flow cytometry, which is detected in two ways. One is detected by the traditional far-filed scattering light, and the other is detected by the near-field evanescent wave. (b) The Schematic diagram (1) and experimental images (2, 3) of a label-free bacteriophage detection by using droplet optofluidic imaging and far-field scattering light. (c) The design (1) and experimental image (2) of the single nanoparticle detection by total internal reflection. Figure reproduced from: (a) ref.51, Springer Nature; (b) ref.47, (c) ref.49, The Royal Society of Chemistry.
(a) Biomolecules detection based on optical force in sub-wavelength slot waveguides. (b) Cells sorting in an optical lattice. (c) Gold nanoparticles sorting in flowing system. (d) Multi-range particles sorting by quasi-Bessel beam. (e) Microparticles sorting based on optical lattice and chromatography. (f) Cell sorting by a new method combing acoustic force and optical force. Figure reproduced from: (a) ref.60, Macmillan Publishers Limited; (b) ref.58, Nature Publishing Group; (c) ref.61, American Chemical Society; (d) ref.62, The Royal Society of Chemistry; (e) ref.63; (f) ref.70, The Royal Society of Chemistry.