Citation: | Tang T, Niu SX , Ma JG, Qi B, Ren G et al. A review on control methodologies of disturbance rejections in optical telescope. Opto‐Electron Adv 2, 190011 (2019). doi: 10.29026/oea.2019.190011 |
[1] | Chen X, Tomizuka M. Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adaptive Control Signal Process 29, 1459-1474 (2015). doi: 10.1002/acs.2546 |
[2] | Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation (Springer, New York, 2014). |
[3] | Tomizuka M. Control methodologies for manufacturing applications. Manuf Lett 1, 46-48 (2013). doi: 10.1016/j.mfglet.2013.09.010 |
[4] | Gao Z Q. Active disturbance rejection control: a paradigm shift in feedback control system design. In Proceedings of 2006 American Control Conference (IEEE, 2006); http://doi.org/10.1109/ACC.2006.1656579. |
[5] | Han J Q. From PID to active disturbance rejection control. IEEE Trans Ind Electron 56, 900-906 (2009). doi: 10.1109/TIE.2008.2011621 |
[6] | Deng C, Tang T, Mao Y, et al. Enhanced Disturbance Observer Based on Acceleration Measurement for Fast Steering Mirror Systems. IEEE Photonics Journal 9, 1-11(2017). |
[7] | Lozi J, Guyon O, Jovanovic N, Singh G, Goebel S et al. Characterizing and mitigating vibrations for SCExAO. Proc SPIE 9909, 99090J (2016). doi: 10.1117/12.2233040 |
[8] | Rao C H, Gu N T, Zhu L, Huang J L, Li C et al. 1.8-m solar telescope in China: Chinese large solar telescope. J Astron Telescopes Instrum Syst 1, 024001 (2015). doi: 10.1117/1.JATIS.1.2.024001 |
[9] | MacMartin D G. Control challenges for extremely large telescopes. Proc SPIE 5054, 275-286 (2003). doi: 10.1117/12.484661 |
[10] | Gawronski W. Control and pointing challenges of large antennas and telescopes. IEEE Trans Control Syst Technol 15, 276-289 (2007). doi: 10.1109/TCST.2006.886434 |
[11] | Petit C, Sauvage J F, Fusco T, Sevin A, Suarez M et al. SPHERE extreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system. Proc SPIE, 9148, 91480O (2014). doi: 10.1117/12.2052847 |
[12] | MacMartin D G, Thompson H A. Vibration budget for observatory equipment. J Astron Telesc Instrum Syst 1, 034005 (2015). doi: 10.1117/1.JATIS.1.3.034005 |
[13] | Böhm M, Pott J U, Kürster M, Sawodny O, Defrère D et al. Delay compensation for real time disturbance estimation at extremely large telescopes. IEEE Trans Control Syst Technol 25, 1384-1393 (2017). doi: 10.1109/TCST.2016.2601627 |
[14] | Glück M, Pott J U, Sawodny O. Piezo-actuated vibration disturbance mirror for investigating accelerometer-based tip-tilt reconstruction in large telescopes. IFAC-PapersOnLine 49, 361-366 (2016). doi: 10.1016/j.ifacol.2016.10.581 |
[15] | Ken F, Susumu Y, Nobutaka B, Shin-ichiro S, Atsuo T et al. Accelerometer assisted high bandwidth control of tip-tilt mirror for precision pointing stability. In Proceedings of IEEE on Aerospace Conference (IEEE, 2011); http://doi.org/10.1109/AERO.2011.5747383. |
[16] | Agapito G, Battistelli G, Mari D, Selvi D, Tesi A et al. Frequency based design of modal controllers for adaptive optics systems. Opt Express 20, 27108-27122 (2012). doi: 10.1364/OE.20.027108 |
[17] | Muradore R, Pettazzi L, Fedrigo E. Adaptive vibration cancellation in adaptive optics: An experimental validation. In Proceedings of 2014 European Control Conference 2418-2423 (IEEE, 2014); http://doi.org/10.1109/ECC.2014.6862434. |
[18] | Pettazzi L, Fedrigo E, Muradore R, Haguenauer P, Pallanca L. Improving the accuracy of interferometric measurements through adaptive vibration cancellation. In Proceedings of 2015 IEEE Conference on Control Applications 95-100 (IEEE, 2015); http://doi.org/10.1109/CCA.2015.7320616. |
[19] | Yang K J, Yang P, Chen S Q, et al. Vibration identification based on Levenberg-Marquardt optimization for mitigation in adaptive optics systems. Appl Opt 57, 2820-2826 (2018). doi: 10.1364/AO.57.002820 |
[20] | Böhm M, Pott J U, Kürster M, Sawodny O. Modeling and identification of the optical path at ELTs- a case study at the LBT. IFAC Proc Volumes, 46, 249-255(2013). doi: 10.3182/20130410-3-cn-2034.00014 |
[21] | Castro M, Escárate P, Zuñiga S, Garcés J, Guesalaga A. Closed loop for tip-tilt vibration mitigation. In Applications of Lasers for Sensing and Free Space Communications 2015 (OSA, 2015); https://doi.org/10.1364/AOMS.2015.JT5A.28. |
[22] | Petit C, Conan J M, Kulcsár C, Raynaud H F. Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26, 1307-1325 (2009). doi: 10.1364/JOSAA.26.001307 |
[23] | Radke A, Gao Z Q. A survey of state and disturbance observers for practitioners. In Proceedings of 2006 American Control Conference (IEEE, 2006); http://doi.org/10.1109/ACC.2006.1657545. |
[24] | Sariyildiz E, Ohnishi K. Stability and robustness of disturbance- observer-based motion control systems. IEEE Trans Ind Electron 62, 414-422 (2015). doi: 10.1109/TIE.2014.2327009 |
[25] | Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods-an overview. IEEE Trans Ind Electron 63, 1083-1095 (2016). doi: 10.1109/TIE.2015.2478397 |
[26] | Kim J S, Back J, Park G. Design of Q-filters for disturbance observers via BMI approach. In Proceedings of the 14th International Conference on Control, Automation and Systems 1197-1200 (IEEE, 2014); http://doi.org/10.1109/ICCAS.2014.6987741. |
[27] | Zheng M H, Zhou S Y, Tomizuka M. A design methodology for disturbance observer with application to precision motion control: an H-infinity based approach. In Proceedings of 2017 American Control Conference 3524-3529 (IEEE, 2017); http://doi.org/10.23919/ACC.2017.7963492. |
[28] | Tang T, Qi B, Yang T. Youla-Kucera parameterization-based optimally closed-loop control for tip-Tilt compensation. IEEE Sens J 18, 6154-6160 (2018). doi: 10.1109/JSEN.2018.2846817 |
[29] | Tang T, Yang T, Qi B, Cao L, Ren G et al. Error-based plug-in controller of tip-tilt mirror to reject telescope's structural vibrations. J Astron Telesc Instrum Syst 4, 049004 (2018). doi: 10.1117/1.JATIS.4.4.049004 |
[30] | Chen X, Jiang T Y, Tomizuka M. Pseudo Youla-Kucera parameterization with control of the waterbed effect for local loop shaping. Automatica 62, 177-183 (2015). doi: 10.1016/j.automatica.2015.09.029 |
[31] | Jiang T Y, Chen X. Transmission of signal nonsmoothness and transient improvement in add-on servo control. IEEE Trans Control Syst Technol 26, 486-496 (2017). doi: 10.1109/TCST.2017.2672399 |
[32] | Zhou K L, Wang D W, Zhang B, Wang Y G. Plug-in dual-mode-structure repetitive controller for CVCF PWM inverters. IEEE Trans Ind Electron 56, 784-791 (2009). doi: 10.1109/TIE.2008.2005149 |
[33] | Cho Y, Lai J S. Digital plug-in repetitive controller for single-phase bridgeless PFC converters. IEEE Trans Power Electron 28, 165-175 (2013). doi: 10.1109/TPEL.2012.2196288 |
[34] | Chen X, Tomizuka M. New repetitive control with improved steady-state performance and accelerated transient. IEEE Trans Control Syst Technol 22, 664-675 (2014). doi: 10.1109/TCST.2013.2253102 |
[35] | Mahani N K Z, Sedigh A K, Bayat F M. Performance evaluation of non-minimum phase linear control systems with fractional order partial pole-zero cancellation. In Proceedings of the 9th Asian Control Conference (IEEE, 2013); http://doi.org/10.1109/ASCC.2013.6606329. |
[36] | Stengel R F. Optimal Control and Estimation (Dover Publications, New York, 1994). |
[37] | Siouris G M. Errata to an engineering approach to optimal control and estimation theory. IEEE Aero Electron Syst Mag 12, 37 (1997). doi: 10.1109/MAES.1997.560335 |
[38] | Glück M, Pott J U, Sawodny O. Investigations of an accelerometer-based disturbance feedforward control for vibration suppression in adaptive optics of large telescopes. Pub Astron Soc Pacific 2017, 129, 065001 (2017). doi: 10.1088/1538-3873/aa632b |
[39] | Kempf C J, Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans Control Syst Technol 7, 513-526 (1999). doi: 10.1109/87.784416 |
[40] | Kim B K, Chung W K. Advanced disturbance observer design for mechanical positioning systems. IEEE Trans Ind Electron 50, 1207-1216 (2003). doi: 10.1109/TIE.2003.819695 |
[41] | Tang T, Xu N S, Yang T, Qi B, Bao Q L. Vibration rejection of Tip-Tilt mirror using improved repetitive control. Mech Syst Signal Process 116, 432-442 (2019). doi: 10.1016/j.ymssp.2018.06.060 |
[42] | Guesalaga A, Neichel B, O'Neal J, Guzman D. Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals. Opt Express 21, 10676-10696 (2013). doi: 10.1364/OE.21.010676 |
[43] | Huang Y, Xue W C. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans 53, 963-976 (2014). doi: 10.1016/j.isatra.2014.03.003 |
[44] | Chen W H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mech 9, 706-710 (2004). doi: 10.1109/TMECH.2004.839034 |
[45] | Won D, Kim W, Shin D, Chung C C. High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems. IEEE Trans Control Syst Technol 23, 787-795 (2015). doi: 10.1109/TCST.2014.2325895 |
[46] | Liu L P, Fu Z M, Song X N. Sliding mode control with disturbance observer for a class of nonlinear systems. Int J Autom Comput 9, 487-491 (2012). doi: 10.1007/s11633-012-0671-z |
Schematic view of the Tip-Tilt mirror system.
LQG control structure of Tip-Tilt mirror.
DFF control structure of Tip-Tilt mirror.
Conventional DOBC structure of Tip-Tilt mirror.
Error-based DOBC structure of Tip-Tilt mirror.
Bode response of the sensitivity function with I and QL(s).
The closed-loop Tip-Tilt errors.
Spectra of Tip-Tilt vibrations.
Bode response of Q(s) and ESF(s).
Spectra of Tip-Tilt vibrations in DOBC mode.
Bode response of the Eq. (25).
Bode response of the Eq. (26).
Sensitivity function responses in frequency domain.
Tip-Tilt errors in different control modes.
Spectra of Tip-Tilt vibrations with CRC and IRC.