Tang T, Niu SX , Ma JG, Qi B, Ren G et al. A review on control methodologies of disturbance rejections in optical telescope. Opto‐Electron Adv 2, 190011 (2019). doi: 10.29026/oea.2019.190011
Citation: Tang T, Niu SX , Ma JG, Qi B, Ren G et al. A review on control methodologies of disturbance rejections in optical telescope. Opto‐Electron Adv 2, 190011 (2019). doi: 10.29026/oea.2019.190011

Review Open Access

A review on control methodologies of disturbance rejections in optical telescope

More Information
  • Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes. In this paper, the state of art control methods-proportional integral (PI) control, linear quadratic Gaussian (LQG) control, disturbance feed forward (DFF) control, and disturbance observer control (DOBC) of Tip-Tilt mirror to reject vibrations are first reviewed, and then compared systematically and comprehensively. Some mathematical transformations allow PI, LQG, DFF, and DOBC to be described in a uniform framework of sensitivity function that expresses their advantages and disadvantages. In essence, feed forward control based-inverse model is the main idea of current techniques, which is dependent on accuracies of models in terms of Tip-Tilt mirror and vibrations. DOBC can relax dependences on accuracy model, and therefore this survey concentrates on concise tutorials of this method with clear descriptions of their features in the control area of disturbance rejections. Its applications in various conditions are reviewed with emphasis on the effectiveness. Finally, the open problems, challenges and research prospects of DOBC of Tip-Tilt mirror are discussed.
  • 加载中
  • [1] Chen X, Tomizuka M. Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adaptive Control Signal Process 29, 1459-1474 (2015). doi: 10.1002/acs.2546

    CrossRef Google Scholar

    [2] Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation (Springer, New York, 2014).

    Google Scholar

    [3] Tomizuka M. Control methodologies for manufacturing applications. Manuf Lett 1, 46-48 (2013). doi: 10.1016/j.mfglet.2013.09.010

    CrossRef Google Scholar

    [4] Gao Z Q. Active disturbance rejection control: a paradigm shift in feedback control system design. In Proceedings of 2006 American Control Conference (IEEE, 2006); http://doi.org/10.1109/ACC.2006.1656579.

    Google Scholar

    [5] Han J Q. From PID to active disturbance rejection control. IEEE Trans Ind Electron 56, 900-906 (2009). doi: 10.1109/TIE.2008.2011621

    CrossRef Google Scholar

    [6] Deng C, Tang T, Mao Y, et al. Enhanced Disturbance Observer Based on Acceleration Measurement for Fast Steering Mirror Systems. IEEE Photonics Journal 9, 1-11(2017).

    Google Scholar

    [7] Lozi J, Guyon O, Jovanovic N, Singh G, Goebel S et al. Characterizing and mitigating vibrations for SCExAO. Proc SPIE 9909, 99090J (2016). doi: 10.1117/12.2233040

    CrossRef Google Scholar

    [8] Rao C H, Gu N T, Zhu L, Huang J L, Li C et al. 1.8-m solar telescope in China: Chinese large solar telescope. J Astron Telescopes Instrum Syst 1, 024001 (2015). doi: 10.1117/1.JATIS.1.2.024001

    CrossRef Google Scholar

    [9] MacMartin D G. Control challenges for extremely large telescopes. Proc SPIE 5054, 275-286 (2003). doi: 10.1117/12.484661

    CrossRef Google Scholar

    [10] Gawronski W. Control and pointing challenges of large antennas and telescopes. IEEE Trans Control Syst Technol 15, 276-289 (2007). doi: 10.1109/TCST.2006.886434

    CrossRef Google Scholar

    [11] Petit C, Sauvage J F, Fusco T, Sevin A, Suarez M et al. SPHERE extreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system. Proc SPIE, 9148, 91480O (2014). doi: 10.1117/12.2052847

    CrossRef Google Scholar

    [12] MacMartin D G, Thompson H A. Vibration budget for observatory equipment. J Astron Telesc Instrum Syst 1, 034005 (2015). doi: 10.1117/1.JATIS.1.3.034005

    CrossRef Google Scholar

    [13] Böhm M, Pott J U, Kürster M, Sawodny O, Defrère D et al. Delay compensation for real time disturbance estimation at extremely large telescopes. IEEE Trans Control Syst Technol 25, 1384-1393 (2017). doi: 10.1109/TCST.2016.2601627

    CrossRef Google Scholar

    [14] Glück M, Pott J U, Sawodny O. Piezo-actuated vibration disturbance mirror for investigating accelerometer-based tip-tilt reconstruction in large telescopes. IFAC-PapersOnLine 49, 361-366 (2016). doi: 10.1016/j.ifacol.2016.10.581

    CrossRef Google Scholar

    [15] Ken F, Susumu Y, Nobutaka B, Shin-ichiro S, Atsuo T et al. Accelerometer assisted high bandwidth control of tip-tilt mirror for precision pointing stability. In Proceedings of IEEE on Aerospace Conference (IEEE, 2011); http://doi.org/10.1109/AERO.2011.5747383.

    Google Scholar

    [16] Agapito G, Battistelli G, Mari D, Selvi D, Tesi A et al. Frequency based design of modal controllers for adaptive optics systems. Opt Express 20, 27108-27122 (2012). doi: 10.1364/OE.20.027108

    CrossRef Google Scholar

    [17] Muradore R, Pettazzi L, Fedrigo E. Adaptive vibration cancellation in adaptive optics: An experimental validation. In Proceedings of 2014 European Control Conference 2418-2423 (IEEE, 2014); http://doi.org/10.1109/ECC.2014.6862434.

    Google Scholar

    [18] Pettazzi L, Fedrigo E, Muradore R, Haguenauer P, Pallanca L. Improving the accuracy of interferometric measurements through adaptive vibration cancellation. In Proceedings of 2015 IEEE Conference on Control Applications 95-100 (IEEE, 2015); http://doi.org/10.1109/CCA.2015.7320616.

    Google Scholar

    [19] Yang K J, Yang P, Chen S Q, et al. Vibration identification based on Levenberg-Marquardt optimization for mitigation in adaptive optics systems. Appl Opt 57, 2820-2826 (2018). doi: 10.1364/AO.57.002820

    CrossRef Google Scholar

    [20] Böhm M, Pott J U, Kürster M, Sawodny O. Modeling and identification of the optical path at ELTs- a case study at the LBT. IFAC Proc Volumes, 46, 249-255(2013). doi: 10.3182/20130410-3-cn-2034.00014

    CrossRef Google Scholar

    [21] Castro M, Escárate P, Zuñiga S, Garcés J, Guesalaga A. Closed loop for tip-tilt vibration mitigation. In Applications of Lasers for Sensing and Free Space Communications 2015 (OSA, 2015); https://doi.org/10.1364/AOMS.2015.JT5A.28.

    Google Scholar

    [22] Petit C, Conan J M, Kulcsár C, Raynaud H F. Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26, 1307-1325 (2009). doi: 10.1364/JOSAA.26.001307

    CrossRef Google Scholar

    [23] Radke A, Gao Z Q. A survey of state and disturbance observers for practitioners. In Proceedings of 2006 American Control Conference (IEEE, 2006); http://doi.org/10.1109/ACC.2006.1657545.

    Google Scholar

    [24] Sariyildiz E, Ohnishi K. Stability and robustness of disturbance- observer-based motion control systems. IEEE Trans Ind Electron 62, 414-422 (2015). doi: 10.1109/TIE.2014.2327009

    CrossRef Google Scholar

    [25] Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods-an overview. IEEE Trans Ind Electron 63, 1083-1095 (2016). doi: 10.1109/TIE.2015.2478397

    CrossRef Google Scholar

    [26] Kim J S, Back J, Park G. Design of Q-filters for disturbance observers via BMI approach. In Proceedings of the 14th International Conference on Control, Automation and Systems 1197-1200 (IEEE, 2014); http://doi.org/10.1109/ICCAS.2014.6987741.

    Google Scholar

    [27] Zheng M H, Zhou S Y, Tomizuka M. A design methodology for disturbance observer with application to precision motion control: an H-infinity based approach. In Proceedings of 2017 American Control Conference 3524-3529 (IEEE, 2017); http://doi.org/10.23919/ACC.2017.7963492.

    Google Scholar

    [28] Tang T, Qi B, Yang T. Youla-Kucera parameterization-based optimally closed-loop control for tip-Tilt compensation. IEEE Sens J 18, 6154-6160 (2018). doi: 10.1109/JSEN.2018.2846817

    CrossRef Google Scholar

    [29] Tang T, Yang T, Qi B, Cao L, Ren G et al. Error-based plug-in controller of tip-tilt mirror to reject telescope's structural vibrations. J Astron Telesc Instrum Syst 4, 049004 (2018). doi: 10.1117/1.JATIS.4.4.049004

    CrossRef Google Scholar

    [30] Chen X, Jiang T Y, Tomizuka M. Pseudo Youla-Kucera parameterization with control of the waterbed effect for local loop shaping. Automatica 62, 177-183 (2015). doi: 10.1016/j.automatica.2015.09.029

    CrossRef Google Scholar

    [31] Jiang T Y, Chen X. Transmission of signal nonsmoothness and transient improvement in add-on servo control. IEEE Trans Control Syst Technol 26, 486-496 (2017). doi: 10.1109/TCST.2017.2672399

    CrossRef Google Scholar

    [32] Zhou K L, Wang D W, Zhang B, Wang Y G. Plug-in dual-mode-structure repetitive controller for CVCF PWM inverters. IEEE Trans Ind Electron 56, 784-791 (2009). doi: 10.1109/TIE.2008.2005149

    CrossRef Google Scholar

    [33] Cho Y, Lai J S. Digital plug-in repetitive controller for single-phase bridgeless PFC converters. IEEE Trans Power Electron 28, 165-175 (2013). doi: 10.1109/TPEL.2012.2196288

    CrossRef Google Scholar

    [34] Chen X, Tomizuka M. New repetitive control with improved steady-state performance and accelerated transient. IEEE Trans Control Syst Technol 22, 664-675 (2014). doi: 10.1109/TCST.2013.2253102

    CrossRef Google Scholar

    [35] Mahani N K Z, Sedigh A K, Bayat F M. Performance evaluation of non-minimum phase linear control systems with fractional order partial pole-zero cancellation. In Proceedings of the 9th Asian Control Conference (IEEE, 2013); http://doi.org/10.1109/ASCC.2013.6606329.

    Google Scholar

    [36] Stengel R F. Optimal Control and Estimation (Dover Publications, New York, 1994).

    Google Scholar

    [37] Siouris G M. Errata to an engineering approach to optimal control and estimation theory. IEEE Aero Electron Syst Mag 12, 37 (1997). doi: 10.1109/MAES.1997.560335

    CrossRef Google Scholar

    [38] Glück M, Pott J U, Sawodny O. Investigations of an accelerometer-based disturbance feedforward control for vibration suppression in adaptive optics of large telescopes. Pub Astron Soc Pacific 2017, 129, 065001 (2017). doi: 10.1088/1538-3873/aa632b

    CrossRef Google Scholar

    [39] Kempf C J, Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans Control Syst Technol 7, 513-526 (1999). doi: 10.1109/87.784416

    CrossRef Google Scholar

    [40] Kim B K, Chung W K. Advanced disturbance observer design for mechanical positioning systems. IEEE Trans Ind Electron 50, 1207-1216 (2003). doi: 10.1109/TIE.2003.819695

    CrossRef Google Scholar

    [41] Tang T, Xu N S, Yang T, Qi B, Bao Q L. Vibration rejection of Tip-Tilt mirror using improved repetitive control. Mech Syst Signal Process 116, 432-442 (2019). doi: 10.1016/j.ymssp.2018.06.060

    CrossRef Google Scholar

    [42] Guesalaga A, Neichel B, O'Neal J, Guzman D. Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals. Opt Express 21, 10676-10696 (2013). doi: 10.1364/OE.21.010676

    CrossRef Google Scholar

    [43] Huang Y, Xue W C. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans 53, 963-976 (2014). doi: 10.1016/j.isatra.2014.03.003

    CrossRef Google Scholar

    [44] Chen W H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mech 9, 706-710 (2004). doi: 10.1109/TMECH.2004.839034

    CrossRef Google Scholar

    [45] Won D, Kim W, Shin D, Chung C C. High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems. IEEE Trans Control Syst Technol 23, 787-795 (2015). doi: 10.1109/TCST.2014.2325895

    CrossRef Google Scholar

    [46] Liu L P, Fu Z M, Song X N. Sliding mode control with disturbance observer for a class of nonlinear systems. Int J Autom Comput 9, 487-491 (2012). doi: 10.1007/s11633-012-0671-z

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint