Citation: | Wu J Z, Long H, Shi X L, Luo S, Chen Z H et al. Polariton lasing in InGaN quantum wells at room temperature. Opto-Electron Adv 2, 190014 (2019). doi: 10.29026/oea.2019.190014 |
[1] | Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev 112, 1555–1567 (1958). doi: 10.1103/PhysRev.112.1555 |
[2] | Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation.Rev Mod Phys 82, 1489–1537 (2010). doi: 10.1103/RevModPhys.82.1489 |
[3] | Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002). doi: 10.1126/science.1074464 |
[4] | Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). doi: 10.1038/nature05131 |
[5] | Sun L X, Chen Z H, Ren Q J, Yu K, Bai L H et al. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys Rev Lett 100, 156403 (2008). doi: 10.1103/PhysRevLett.100.156403 |
[6] | Christopoulos S, von Högersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett 98, 126405 (2007). doi: 10.1103/PhysRevLett.98.126405 |
[7] | Lai Y Y, Lan Y P, Lu T C. High-temperature polariton lasing in a strongly coupled ZnO microcavity. Appl Phys Exp 5, 082801 (2012). doi: 10.1143/APEX.5.082801 |
[8] | Su R, Diederichs C, Wang J, Liew T C H, Zhao J Xet al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Letts 17, 3982–3988 (2017). doi: 10.1021/acs.nanolett.7b01956 |
[9] | Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 955–961 (1998). doi: 10.1126/science.281.5379.956 |
[10] | Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997). doi: 10.1038/386351a0 |
[11] | Nakamura S, Senoh M, Nagahama S I, Iwasa N, Yamada T et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys 35, L74–L76 (1996). doi: 10.1143/JJAP.35.L74 |
[12] | Bhattacharya P, Frost T, Deshpande S, Baten M Z, Hazari A et al. Room temperature electrically injected polariton laser. Phys Rev Letts 112, 236802 (2014). doi: 10.1103/PhysRevLett.112.236802 |
[13] | Tawara T, Gotoh H, Akasaka T, Kobayashi N, Saitoh T. Cavity polaritons in InGaN microcavities at room temperature. Phys Rev Letts 92, 256402 (2004). doi: 10.1103/PhysRevLett.92.256402 |
[14] | Lu T C, Chen J R, Lin S C, Huang S W, Wang S C et al. Room temperature current injection polariton light emitting diode with a hybrid microcavity. Nano Lett 11, 2791–2795 (2011). doi: 10.1021/nl2011164 |
[15] | Glauser M, Mounir C, Rossbach G, Feltin E, Carlin J F et al. InGaN/GaN quantum wells for polariton laser diodes: Role of inhomogeneous broadening. J Appl Phys 115, 233511 (2014). doi: 10.1063/1.4883958 |
[16] | Christmann G, Butté R, Feltin E, Carlin J F, Grandjean N. Impact of inhomogeneous excitonic broadening on the strong exciton-photon coupling in quantum well nitride microcavities. Phys Rev B 73, 153305 (2006). doi: 10.1103/PhysRevB.73.153305 |
[17] | Wu J Z, Shi X L, Long H, Chen L, Ying L Y et al. Large Rabi splitting in InGaN quantum wells microcavity at room temperature. Mater Res Express 6, 076204 (2019). doi: 10.1088/2053-1591/ab1a05 |
[18] | Liu W J, Chen S Q, Hu X L, Liu Z, Zhang J Y et al. Low threshold lasing of GaN-based VCSELs with sub-nanometer roughness polishing. IEEE Photonics Technol Lett 25, 2014–2017 (2013). doi: 10.1109/LPT.2013.2280965 |
[19] | Liu W J, Hu X L, Ying L Y, Zhang J Y, Zhang B P. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers. Appl Phys Lett 104, 251116 (2014). doi: 10.1063/1.4885384 |
[20] | Azuhata T, Sota T, Suzuki K, Nakamura S. Polarized Raman spectra in GaN. J Phys Condens Matter 7, L129–L133 (1995). doi: 10.1088/0953-8984/7/10/002 |
[21] | Kovalev D, Averboukh B, Volm D, Meyer B K, Amano H et al. Free exciton emission in GaN. Phys Rev B 54, 2518–2522 (1996). doi: 10.1103/PhysRevB.54.2518 |
[22] | Chichibu S, Azuhata T, Sota T, Nakamura S. Excitonic emissions from hexagonal GaN epitaxial layers. J Appl Phys 79, 2784–2786 (1996). doi: 10.1063/1.361110 |
[23] | Porras D, Tejedor C. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects. Phys Rev B 67, 161310 (2003). doi: 10.1103/PhysRevB.67.161310 |
[24] | Médard F, Zuniga-Perez J, Disseix P, Mihailovic M, Leymarie J et al. Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption. Phys Rev B 79, 125302 (2009). doi: 10.1103/PhysRevB.79.125302 |
[25] | Faure S, Guillet T, Lefebvre P, Bretagnon T, Gil B. Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities. Phys Rev B 78, 235323 (2008). doi: 10.1103/PhysRevB.78.235323 |
[26] | Tsintzos S I, Pelekanos N T, Konstantinidis G, Hatzopoulos Z, Savvidis P G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008). doi: 10.1038/nature06979 |
[27] | Peyghambarian N, Gibbs H M, Jewell J L, Antonetti A, Migus A et al. Blue shift of the exciton resonance due to exciton-exciton interactions in a multiple-quantum-well structure. Phys Rev Lett 53, 2433–2436 (1984). doi: 10.1103/PhysRevLett.53.2433 |
[28] | Shi X L, Long H, Wu J Z, Chen L, Ying L Y et al. Theoretical optimization of inhomogeneous broadening in InGaN/GaN MQWs to polariton splitting at low temperature. Superlattices Microstruct 128, 151–156 (2019). doi: 10.1016/j.spmi.2019.01.021 |
[29] | Butté R, Levrat J, Christmann G, Feltin E, Carlin J F et al. Phase diagram of a polariton laser from cryogenic to room temperature. Phys Rev B 80, 233301 (2009). doi: 10.1103/PhysRevB.80.233301 |
[30] | Levrat J, Butté R, Feltin E, Carlin J F, Grandjean N et al. Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory. Phys Rev B 81, 125305 (2010). doi: 10.1103/PhysRevB.81.125305 |
(a) Sample structure of InGaN/GaN MQWs microcavity for strong coupling. (b) The optical field in the microcavity with MQWs placed on the antinode. (c) and (d) Photoluminescence spectrums of bare wafer at 15 K and 300 K.
(a) Schematic of angle-resolved micro-PL setup. (b) Schematic of angle-resolved PL Fourier image setup. (c) The angle resolved micro-PL of positive detuning sample. (d) LPB and UPB dispersion curves fitted by coupled oscillator model. (e) The angle resolved micro-PL Fourier image of negative detuning sample.
(a) The dependence of luminous intensity, peak position and half-width of LPB on the excitation power with double nonlinear regimes. (b) Enlarged polariton lasing region with linear coordinates. (T1 and T2 denote the polariton lasing threshold and photonic lasing threshold)
The k-space mapping of exciton polaritons under different excitation power.