Citation: | Dou K H, Xie X, Pu M B, Li X, Ma X L et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). doi: 10.29026/oea.2020.190005 |
[1] | Yang C A, Edwards P, Shi K B, Liu Z W. Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality. Opt Lett 36, 2023-2025 (2011). doi: 10.1364/OL.36.002023 |
[2] | Gong Y D, Li T J, Jian S S. Multi-channel fiber grating for DWDM. Chin J Electron 9, 292-295 (2000). |
[3] | Stone T, George N. Hybrid diffractive-refractive lenses and achromats. Appl Opt 27, 2960-2971 (1988). doi: 10.1364/AO.27.002960 |
[4] | Luo X G, Tsai D, Gu M, Hong M H. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48, 2458-2494 (2019). doi: 10.1039/c8cs00864g |
[5] | Luo X G, Tsai D, Gu M, Hong M H. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757-842 (2018). doi: 10.1364/AOP.10.000757 |
[6] | Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). doi: 10.29026/oea.2018.180009 |
[7] | Luo X G. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680 |
[8] | Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839 |
[9] | Rahmani M, Leo G, Brener I, Zayats A V, Maier S A et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021 |
[10] | Guo Y H, Pu M B, Zhao Z Y, Wang Y Q, Jin J J et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022-2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[11] | Jin J J, Pu M B, Wang Y Q, Li X, Ma X L et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2, 1600201 (2017). doi: 10.1002/admt.201600201 |
[12] | Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[13] | Li X, Chen L W, Li Y, Zhang X H, Pu M B et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[14] | Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533 (2016). doi: 10.1038/ncomms12533 |
[15] | Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308-312 (2015). doi: 10.1038/nnano.2015.2 |
[16] | Ma X L, Pu M B, Li X, Guo Y H, Luo X G. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). |
[17] | Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137 |
[18] | Chen B H, Wu P C, Su V C, Lai Y C, Chu C H et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett 17, 6345-6352 (2017). doi: 10.1021/acs.nanolett.7b03135 |
[19] | Pu M B, Li X, Guo Y H, Ma X L, Luo X G. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express 25, 31471-31477 (2017). doi: 10.1364/OE.25.031471 |
[20] | Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). doi: 10.1126/science.aac9411 |
[21] | Pu M B, Zhao Z Y, Wang Y Q, Li X, Ma X L et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep 5, 9822 (2015). doi: 10.1038/srep09822 |
[22] | Xie X, Li X, Pu M B, Ma X L, Liu K P et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018). doi: 10.1002/adfm.201706673 |
[23] | Xie X, Pu M B, Huang Y J, Ma X L, Li X et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv Mater Technol 4, 1800612 (2019). doi: 10.1002/admt.201800612 |
[24] | Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination. Science 332, 218-220 (2011). doi: 10.1126/science.1201045 |
[25] | Li K, Guo Y H, Pu M B, Li X, Ma X L et al. Dispersion controlling meta-lens at visible frequency. Opt Express 25, 21419-21427 (2017). doi: 10.1364/OE.25.021419 |
[26] | Lin D M, Holsteen A L, Maguid E, Wetzstein G, Kik P G et al. Photonic multitasking interleaved si nanoantenna phased array. Nano Lett 16, 7671-7676 (2016). doi: 10.1021/acs.nanolett.6b03505 |
[27] | Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). doi: 10.1364/OPTICA.3.000628 |
[28] | Khorasaninejad M, Chen W T, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16, 3732-3737 (2016). doi: 10.1021/acs.nanolett.6b01097 |
[29] | Shi Z J, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett 18, 2420-2427 (2018). doi: 10.1021/acs.nanolett.7b05458 |
[30] | Fan Q B, Zhu W Q, Liang Y Z, Huo P C, Zhang C et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett 19, 1158-1165 (2019). doi: 10.1021/acs.nanolett.8b04571 |
[31] | Fan Q B, Huo P C, Wang D P, Liang Y Z, Yan F et al. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays. Sci Rep 7, 45044 (2017). doi: 10.1038/srep45044 |
[32] | Deng Z L, Zhang S, Wang G P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt Express 24, 23118-23128 (2016). doi: 10.1364/OE.24.023118 |
[33] | Liu S, Zhang L, Yang Q L, Xu Q, Yang Y et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv Opt Mater 4, 1965-1973 (2016). doi: 10.1002/adom.201600471 |
[34] | Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682 |
[35] | The working principle of DMD. (last accessed December 3, 2018); http://www.ti.com.cn/product/cn/dlp480re/ |
[36] | Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters. Appl Opt 32, 2606-2613 (1993). doi: 10.1364/AO.32.002606 |
[37] | Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112 |
Supplementary information for Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging |
Comparison between the target phase profiles (a) and optimized results (b) at three wavelengths of 473 nm (left), 532 nm (middle), and 632 nm (right).