Citation: | Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002 |
[1] | Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev 40, 2494-2507 (2011). doi: 10.1039/c0cs00184h |
[2] | Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nat Mater 11, 917-924 (2012). doi: 10.1038/nmat3431 |
[3] | Wong Z J, Wang Y, O'Brien K, Rho J, Yin X B et al. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J Opt 19, 084007 (2017). doi: 10.1088/2040-8986/aa7a1f |
[4] | Cheng H, Liu Z C, Chen S Q, Tian J G. Emergent functionality and controllability in few-layer metasurfaces. Adv Mater 27, 5410-5421 (2015). doi: 10.1002/adma.201501506 |
[5] | Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications. Rep Prog Phys 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401 |
[6] | Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139-152 (2017). doi: 10.1364/OPTICA.4.000139 |
[7] | Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839 |
[8] | He Q, Sun S L, Xiao S Y, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415 |
[9] | Assouar B, Liang B, Wu Y, Li Y, Cheng J C et al. Acoustic metasurfaces. Nat Rev Mater 3, 460-472 (2018). doi: 10.1038/s41578-018-0061-4 |
[10] | Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847 |
[11] | Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628 |
[12] | Moitra P, Yang Y M, Anderson Z, Kravchenko I I, Briggs D P et al. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7, 791-795 (2013). doi: 10.1038/nphoton.2013.214 |
[13] | Li Y, Kita S, Muñoz P, Reshef O, Vulis D I et al. On-chip zero-index metamaterials. Nat Photonics 9, 738-742 (2015). doi: 10.1038/nphoton.2015.198 |
[14] | Sun J B, Litchinitser N M. Toward practical, subwavelength, visible-light photolithography with hyperlens. ACS Nano 12, 542-548 (2018). doi: 10.1021/acsnano.7b07185 |
[15] | Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J, Filonov D S, Voroshilov P M et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat Commun 5, 3226 (2014). doi: 10.1038/ncomms4226 |
[16] | Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photonics 7, 948-957 (2013). doi: 10.1038/nphoton.2013.243 |
[17] | Lu L, Joannopoulos J D, Soljačić M. Topological photonics. Nat Photonics 8, 821-829 (2014). doi: 10.1038/nphoton.2014.248 |
[18] | Wu Y, Li C, Hu X Y, Ao Y T, Zhao Y F et al. Applications of topological photonics in integrated photonic devices. Adv Opt Mater 5, 1700357 (2017). doi: 10.1002/adom.201700357 |
[19] | Khanikaev A B, Shvets G. Two-dimensional topological photonics. Nat Photonics 11, 763-773 (2017). doi: 10.1038/s41566-017-0048-5 |
[20] | Ozawa T, Price H M, Amo A, Goldman N, Hafezi M et al. Topological photonics. Rev Mod Phys 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006 |
[21] | Ma G C, Xiao M, Chan C T. Topological phases in acoustic and mechanical systems. Nat Rev Phys 1, 281-294 (2019). doi: 10.1038/s42254-019-0030-x |
[22] | Cheng H, Chen S Q, Yang H F, Li J J, An X et al. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime. J Opt 14, 085102 (2012). doi: 10.1088/2040-8978/14/8/085102 |
[23] | Li J X, Yu P, Tang C C, Cheng H, Li J J et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces. Adv Opt Mater 5, 1700152 (2017). doi: 10.1002/adom.201700152 |
[24] | Li Z C, Liu W W, Tang C C, Cheng H, Li Z et al. A bilayer plasmonic metasurface for polarization-insensitive bidirectional perfect absorption. Adv Theory Simul 3, 1900216 (2020). doi: 10.1002/adts.201900216 |
[25] | Fang Z Y, Cai J Y, Yan Z B, Nordlander P, Halas N J et al. Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11, 4475-4479 (2011). doi: 10.1021/nl202804y |
[26] | Duan X Y, Chen S Q, Yang H F, Cheng H, Li J J et al. Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett 101, 143105 (2012). doi: 10.1063/1.4756944 |
[27] | Chen H T, Zhou J F, O'Hara J F, Chen F, Azad A K et al. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett 105, 073901 (2010). doi: 10.1103/PhysRevLett.105.073901 |
[28] | Huang L, Chang C C, Zeng B B, Nogan J, Luo S N et al. Bilayer metasurfaces for dual- and broadband optical antireflection. ACS Photonics 4, 2111-2116 (2017). doi: 10.1021/acsphotonics.7b00471 |
[29] | Gansel J K, Thiel M, Rill M S, Decker M, Bade K et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031 |
[30] | Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett 13, 1086-1091 (2013). doi: 10.1021/nl304392b |
[31] | Wan W W, Gao J, Yang X D. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541 (2017). doi: 10.1002/adom.201700541 |
[32] | Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732 |
[33] | Akram M R, Ding G, Chen K, Feng Y, Zhu W. Ultrathin Single Layer Metasurfaces with Ultra-Wideband Operation for Both Transmission and Reflection. Adv Mater 32, 1907308 (2020). doi: 10.1002/adma.201907308 |
[34] | Huang L L, Chen X Z, Mühlenbernd H, Li G X, Bai B F et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 12, 5750-5755 (2012). doi: 10.1021/nl303031j |
[35] | Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100 |
[36] | Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials. Adv Opt Mater 5, 1700624 (2017). doi: 10.1002/adom.201700624 |
[37] | Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10 |
[38] | Chen S Q, Li Z, Zhang Y B, Cheng H, Tian J G. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv Opt Mater 6, 1800104 (2018). doi: 10.1002/adom.201800104 |
[39] | Wen D D, Yue F Y, Liu W W, Chen S Q, Chen X Z. Geometric metasurfaces for ultrathin optical devices. Adv Opt Mater 6, 1800348 (2018). doi: 10.1002/adom.201800348 |
[40] | Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R. Metasurfaces: From microwaves to visible. Phys Rep 634, 1-72 (2016). doi: 10.1016/j.physrep.2016.04.004 |
[41] | Sun S L, He Q, Hao J M, Xiao S Y, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics 11, 380-479 (2019). doi: 10.1364/AOP.11.000380 |
[42] | Chen S Q, Li Z C, Liu W W, Cheng H, Tian J G. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces. Adv Mater 31, 1802458 (2019). doi: 10.1002/adma.201802458 |
[43] | Chen S Q, Liu W W, Li Z C, Cheng H, Tian J G. Metasurface-empowered optical multiplexing and multifunction. Adv Mater 32, 1805912 (2020). doi: 10.1002/adma.201805912 |
[44] | Chen S Q, Zhang Y B, Li Z, Cheng H, Tian J G. Empowered layer effects and prominent properties in few-layer metasurfaces. Adv Opt Mater 7, 1801477 (2019). doi: 10.1002/adom.201801477 |
[45] | Wang Q, Zhang X Q, Xu Y H, Gu J Q, Li Y F et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867 |
[46] | Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[47] | Teo J Y H, Wong L J, Molardi C, Genevet P. Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys Rev A 94, 023820 (2016). doi: 10.1103/PhysRevA.94.023820 |
[48] | Ding J, Xu N N, Ren H, Lin Y K, Zhang W L et al. Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength. Sci Rep 6, 34020 (2016). doi: 10.1038/srep34020 |
[49] | Liu Z C, Chen S Q, Li J X, Cheng H, Li Z C et al. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces. Opt Lett 39, 6763-6766 (2014). doi: 10.1364/OL.39.006763 |
[50] | Liu Z C, Chen S Q, Cheng H, Li Z C, Liu W W et al. Interferometric control of signal light intensity by anomalous refraction with plasmonic metasurface. Plasmonics 11, 353-358 (2016). doi: 10.1007/s11468-015-0040-1 |
[51] | Kim M, Wong A M H, Eleftheriades G V. Optical Huygens' metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 4, 041042 (2014). |
[52] | Jia S L, Wan X, Su P, Zhao Y J, Cui T J. Broadband metasurface for independent control of reflected amplitude and phase. AIP Adv 6, 045024 (2016). doi: 10.1063/1.4948513 |
[53] | Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26, 5031-5036 (2014). doi: 10.1002/adma.201401484 |
[54] | Wan X, Jia S L, Cui T J, Zhao Y J. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces. Sci Rep 6, 25639 (2016). doi: 10.1038/srep25639 |
[55] | Song X, Huang L L, Tang C C, Li J J, Li X W et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv Opt Mater 6, 1701181 (2018). doi: 10.1002/adom.201701181 |
[56] | Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces. Sci Rep 7, 43722 (2017). doi: 10.1038/srep43722 |
[57] | Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12, 6223-6229 (2012). doi: 10.1021/nl3032668 |
[58] | Li Z, Cheng H, Liu Z C, Chen S Q, Tian J G. Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces. Adv Opt Mater 4, 1230-1235 (2016). doi: 10.1002/adom.201600108 |
[59] | Jin J J, Pu M B, Wang Y Q, Li X, Ma X L et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2, 1600201 (2017). doi: 10.1002/admt.201600201 |
[60] | Lee G Y, Yoon G, Lee S Y, Yun H, Cho J et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237-4245 (2018). doi: 10.1039/C7NR07154J |
[61] | Zhou Y, Kravchenko, I I, Wang H, Zheng H Y, Gu G et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci Appl 8, 80 (2019). doi: 10.1038/s41377-019-0193-3 |
[62] | Overvig A C, Shrestha S, Malek S C, Lu M, Stein A et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7 |
[63] | Liu W W, Li Z C, Li Z, Cheng H, Tang C C et al. Energy-tailorable spin-selective multifunctional metasurfaces with full Fourier components. Adv Mater 31, 1901729 (2019). |
[64] | Hao W M, Deng M, Chen S Q, Chen L. High-efficiency generation of airy beams with Huygens' metasurface. Phys Rev Appl 11, 054012 (2019). doi: 10.1103/PhysRevApplied.11.054012 |
[65] | Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304-1307 (2013). doi: 10.1126/science.1235399 |
[66] | Yang Y M, Wang W Y, Moitra P, Kravchenko I I, Briggs D P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394-1399 (2014). doi: 10.1021/nl4044482 |
[67] | Cong L Q, Xu N N, Gu J Q, Singh R, Han J G et al. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev 8, 626-632 (2014). doi: 10.1002/lpor.201300205 |
[68] | Ding F, Wang Z X, He S L, Shalaev V M, Kildishev A V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111-4119 (2015). doi: 10.1021/acsnano.5b00218 |
[69] | Liu W W, Chen S Q, Li Z C, Cheng H, Yu P et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt Lett 40, 3185-3188 (2015). doi: 10.1364/OL.40.003185 |
[70] | Liu Z C, Li Z C, Liu Z, Cheng H, Liu W W et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics 4, 2061-2069 (2017). doi: 10.1021/acsphotonics.7b00491 |
[71] | Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys Rev Lett 110, 207401 (2013). doi: 10.1103/PhysRevLett.110.207401 |
[72] | Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C et al. Freely tunable broadband polarization rotator for terahertz waves. Adv Mater 27, 1201-1206 (2015). doi: 10.1002/adma.201404981 |
[73] | Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces. Phys Rev Appl 2, 044012 (2014). doi: 10.1103/PhysRevApplied.2.044012 |
[74] | Yue F Y, Wen D D, Xin J T, Gerardot B D, Li J S et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558-1563 (2016). doi: 10.1021/acsphotonics.6b00392 |
[75] | Zuo R Z, Liu W W, Cheng H, Chen S Q, Tian J G. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv Opt Mater 6, 1800795 (2018). doi: 10.1002/adom.201800795 |
[76] | Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12, 6328-6333 (2012). doi: 10.1021/nl303445u |
[77] | Shaltout A, Liu J J, Shalaev V M, Kildishev A V. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 14, 4426-4431 (2014). doi: 10.1021/nl501396d |
[78] | Yu P, Li J X, Tang C C, Cheng H, Liu Z C et al. Controllable optical activity with non-chiral plasmonic metasurfaces. Light Sci Appl 5, e16096 (2016). doi: 10.1038/lsa.2016.96 |
[79] | Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 17, 445-452 (2017). doi: 10.1021/acs.nanolett.6b04446 |
[80] | Wen D D, Yue F Y, Zhang C M, Zang X F, Liu H G et al. Plasmonic metasurface for optical rotation. Appl Phys Lett 111, 023102 (2017). doi: 10.1063/1.4993429 |
[81] | Ma H F, Liu Y Q, Luan K, Cui T J. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces. Sci Rep 6, 39390 (2016). doi: 10.1038/srep39390 |
[82] | Li T Y, Huang L L, Liu J, Wang Y T, Zentgraf T. Tunable wave plate based on active plasmonic metasurfaces. Opt Express 25, 4216-4226 (2017). doi: 10.1364/OE.25.004216 |
[83] | Li J X, Chen S Q, Yang H F, Li J J, Yu P et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv Funct Mater 25, 704-710 (2015). doi: 10.1002/adfm.201403669 |
[84] | Yu P, Chen S Q, Li J X, Cheng H, Li Z C et al. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt Lett 40, 3229-3232 (2015). doi: 10.1364/OL.40.003229 |
[85] | Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937-943 (2015). doi: 10.1038/nnano.2015.186 |
[86] | Pfeiffer C, Grbic A. Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett 102, 231116 (2013). doi: 10.1063/1.4810873 |
[87] | Deng Z L, Deng J H, Zhuang X, Wang S, Li K F et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885-2892 (2018). doi: 10.1021/acs.nanolett.8b00047 |
[88] | Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Sci Adv 2, e1501258 (2016). doi: 10.1126/sciadv.1501258 |
[89] | Wen D D, Yue F Y, Li G X, Zheng G X, Chan K et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 6, 8241 (2015). doi: 10.1038/ncomms9241 |
[90] | Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202-1206 (2016). doi: 10.1126/science.aaf3417 |
[91] | Cai T, Tang S W, Wang G M, Xu H X, Sun S L et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 5, 1600506 (2017). doi: 10.1002/adom.201600506 |
[92] | Yue F Y, Wen D D, Zhang C M, Gerardot B D, Wang W et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater 29, 1603838 (2017). doi: 10.1002/adma.201603838 |
[93] | Zhou J X, Qian H L, Hu G W, Luo H L, Wen S C et al. Broadband photonic spin hall meta-lens. ACS Nano 12, 82-88 (2018). doi: 10.1021/acsnano.7b07379 |
[94] | Markovich H, Shishkin II, Hendler N, Ginzburg P. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett 18, 5024-5029 (2018). doi: 10.1021/acs.nanolett.8b01844 |
[95] | Mueller J P B, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[96] | Wang D P, Hwang Y, Dai Y M, Si G Y, Wei S B et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483 |
[97] | Deng Z L, Deng J H, Zhuang X, Wang S, Shi T et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci Appl 7, 78 (2018). doi: 10.1038/s41377-018-0075-0 |
[98] | Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225-230 (2014). doi: 10.1021/nl403811d |
[99] | Montelongo Y, Tenorio-Pearl J O, Milne W I, Wilkinson T D. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 14, 294-298 (2014). doi: 10.1021/nl4039967 |
[100] | Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392 |
[101] | Huang Y W, Rubin N A, Ambrosio A, Shi Z J, Devlin R C et al. Versatile total angular momentum generation using cascaded J-plates. Opt Express 27, 7469-7484 (2019). doi: 10.1364/OE.27.007469 |
[102] | Karimi E, Schulz S A, De Leon I, Qassim H, Upham J et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 3, e167 (2014). doi: 10.1038/lsa.2014.48 |
[103] | Chen S M, Cai Y, Li G X, Zhang S, Cheah K W. Geometric metasurface fork gratings for vortex-beam generation and manipulation. Laser Photonics Rev 10, 322-326 (2016). doi: 10.1002/lpor.201500259 |
[104] | Guo Y H, Pu M B, Zhao Z Y, Wang Y Q, Jin J et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022-2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[105] | Zhao H, Quan B G, Wang X K, Gu C Z, Li J J et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the Terahertz Band. ACS Photonics 5, 1726-1732 (2018). doi: 10.1021/acsphotonics.7b01149 |
[106] | Veksler D, Maguid E, Shitrit N, Ozeri D, Kleiner V et al. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics 2, 661-667 (2015). doi: 10.1021/acsphotonics.5b00113 |
[107] | Zeng J W, Li L, Yang X D, Gao J. Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces. Nano Lett 16, 3101-3108 (2016). doi: 10.1021/acs.nanolett.6b00360 |
[108] | Li Y, Li X, Chen L W, Pu M B, Jin J J et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv Opt Mater 5, 1600502 (2017). doi: 10.1002/adom.201600502 |
[109] | Wang S, Li F J, Deng J H, Ye X, Deng Z L et al. Diatomic metasurface based broadband J-plate for arbitrary spin-to-orbital conversion. J Phys D: Appl Phys 52, 324002 (2019). doi: 10.1088/1361-6463/ab2229 |
[110] | Menzel C, Helgert C, Rockstuhl C, Kley E B, Tunnermann A et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett 104, 253902 (2010). doi: 10.1103/PhysRevLett.104.253902 |
[111] | Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys Rev B 85, 195131 (2012). doi: 10.1103/PhysRevB.85.195131 |
[112] | Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M et al. Three-dimensional infrared metamaterial with asymmetric transmission. ACS Photonics 2, 287-294 (2015). doi: 10.1021/ph5003818 |
[113] | Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys Rev Lett 108, 213905 (2012). doi: 10.1103/PhysRevLett.108.213905 |
[114] | Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902 |
[115] | Zhang C, Pfeiffer C, Jang T, Ray V, Junda M et al. Breaking Malus' law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser Photonics Rev 10, 791-798 (2016). doi: 10.1002/lpor.201500328 |
[116] | Li Z C, Chen S Q, Tang C C, Liu W W, Cheng H et al. Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial. Appl Phys Lett 105, 201103 (2014). doi: 10.1063/1.4902162 |
[117] | Li Z C, Chen S Q, Liu W W, Cheng H, Liu Z C et al. High performance broadband asymmetric polarization conversion due to polarization-dependent reflection. Plasmonics 10, 1703-1711 (2015). doi: 10.1007/s11468-015-9986-2 |
[118] | Ji R N, Wang S W, Liu X X, Chen X S, Lu W. Broadband circular polarizers constructed using helix-like chiral metamaterials. Nanoscale 8, 14725-14729 (2016). doi: 10.1039/C6NR01738J |
[119] | Zhao Y, Shi J W, Sun L Y, Li X Q, Alù A. Alignment-free three-dimensional optical metamaterials. Adv Mater 26, 1439-1445 (2014). doi: 10.1002/adma.201304379 |
[120] | Karimullah A S, Jack C, Tullius R, Rotello V M, Cooke G et al. Disposable plasmonics: plastic templated plasmonic metamaterials with tunable chirality. Adv Mater 27, 5610-5616 (2015). doi: 10.1002/adma.201501816 |
[121] | Khanikaev A B, Arju N, Fan Z, Purtseladze D, Lu F et al. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nat Commun 7, 12045 (2016). doi: 10.1038/ncomms12045 |
[122] | Rodrigues S P, Lan S F, Kang L, Cui Y H, Panuski P W et al. Intensity-dependent modulation of optically active signals in a chiral metamaterial. Nat Commun 8, 14602 (2017). doi: 10.1038/ncomms14602 |
[123] | Liu M K, Powell D A, Guo R, Shadrivov I V, Kivshar Y S. Polarization-induced chirality in metamaterials via optomechanical interaction. Adv Opt Mater 5, 1600760 (2017). doi: 10.1002/adom.201600760 |
[124] | Yang S Y, Liu Z, Hu S, Jin A Z, Yang H F et al. Spin-selective transmission in chiral folded metasurfaces. Nano Lett 19, 3432-3439 (2019). doi: 10.1021/acs.nanolett.8b04521 |
[125] | Zang X F, Dong F L, Yue F Y, Zhang C M, Xu L H et al. Polarization encoded color image embedded in a dielectric metasurface. Adv Mater 30, 1707499 (2018). doi: 10.1002/adma.201707499 |
[126] | Li Z C, Liu W W, Cheng H, Choi D Y, Chen S Q et al. Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces. Adv Opt Mater 7, 1900260 (2019). |
[127] | Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 82, 053811 (2010). doi: 10.1103/PhysRevA.82.053811 |
[128] | Shi J H, Ma H F, Guan C Y, Wang Z P, Cui T J. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces. Phys Rev B 89, 165128 (2014). doi: 10.1103/PhysRevB.89.165128 |
[129] | Parappurath N, Alpeggiani F, Kuipers L, Verhagen E. The origin and limit of asymmetric transmission in chiral resonators. ACS Photonics 4, 884-890 (2017). doi: 10.1021/acsphotonics.6b00947 |
[130] | Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Phys Rev Appl 2, 044011 (2014). doi: 10.1103/PhysRevApplied.2.044011 |
[131] | Li Z F, Mutlu M, Ozbay E. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J Opt 15, 023001 (2013). doi: 10.1088/2040-8978/15/2/023001 |
[132] | Wang Z J, Cheng F, Winsor T, Liu Y M. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016). doi: 10.1088/0957-4484/27/41/412001 |
[133] | Qiu M, Zhang L, Tang Z X, Jin W, Qiu C W et al. 3D metaphotonic nanostructures with intrinsic chirality. Adv Funct Mater 28, 1803147 (2018). doi: 10.1002/adfm.201803147 |
[134] | Bochenkov V E, Shabatina T I. Chiral plasmonic biosensors. Biosensors 8, 120 (2018). doi: 10.3390/bios8040120 |
[135] | Helgert C, Pshenay-Severin E, Falkner M, Menzel C, Rockstuhl C et al. Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Lett 11, 4400-4404 (2011). doi: 10.1021/nl202565e |
[136] | Hentschel M, Schäferling M, Metzger B, Giessen H. Plasmonic diastereomers: adding up chiral centers. Nano Lett 13, 600-606 (2013). doi: 10.1021/nl3041355 |
[137] | Yin X H, Schäferling M, Metzger B, Giessen H. Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett 13, 6238-6243 (2013). doi: 10.1021/nl403705k |
[138] | Hentschel M, Ferry V E, Alivisatos A P. Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization. ACS Photonics 2, 1253-1259 (2015). doi: 10.1021/acsphotonics.5b00354 |
[139] | Wang Z J, Jia H, Yao K, Cai W S, Chen H S et al. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 3, 2096-2101 (2016). doi: 10.1021/acsphotonics.6b00533 |
[140] | Hentschel M, Wu L, Schäferling M, Bai P, Li E P et al. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 6, 10355-10365 (2012). doi: 10.1021/nn304283y |
[141] | Kenney M, Li S X, Zhang X Q, Su X Q, Kim T T et al. Pancharatnam-berry phase induced spin-selective transmission in herringbone dielectric metamaterials. Adv Mater 28, 9567-9572 (2016). doi: 10.1002/adma.201603460 |
[142] | Wu C, Arju N, Kelp G, Fan J A, Dominguez J et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat Commun 5, 3892 (2014). doi: 10.1038/ncomms4892 |
[143] | Ye W M, Yuan X D, Guo C C, Zhang J F, Yang B et al. Large chiroptical effects in planar chiral metamaterials. Phys Rev Appl 7, 054003 (2017). doi: 10.1103/PhysRevApplied.7.054003 |
[144] | Zhou J F, Chowdhury D R, Zhao R K, Azad A K, Chen H T et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B 86, 035448 (2012). doi: 10.1103/PhysRevB.86.035448 |
[145] | Rogacheva A V, Fedotov V A, Schwanecke A S, Zheludev N I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett 97, 177401 (2006). doi: 10.1103/PhysRevLett.97.177401 |
[146] | Cui Y H, Kang L, Lan S F, Rodrigues S, Cai W S. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett 14, 1021-1025 (2014). doi: 10.1021/nl404572u |
[147] | Fasold S, Linß S, Kawde T, Falkner M, Decker M et al. Disorder-enabled pure chirality in bilayer plasmonic metasurfaces. ACS Photonics 5, 1773-1778 (2018). doi: 10.1021/acsphotonics.7b01460 |
[148] | Zhu A Y, Chen W T, Zaidi A, Huang Y W, Khorasaninejad M et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci Appl 7, 17158 (2018). doi: 10.1038/lsa.2017.158 |
[149] | Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S. Circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photonics Rev 10, 137-146 (2016). doi: 10.1002/lpor.201500222 |
[150] | Ma D N, Li Z C, Zhang Y B, Liu W W, Cheng H et al. Giant spin-selective asymmetric transmission in multipolar-modulated metasurfaces. Opt Lett 44, 3805-3808 (2019). doi: 10.1364/OL.44.003805 |
[151] | Liu J Y, Li Z C, Liu W W, Cheng H, Chen S Q et al. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Adv Opt Mater 4, 2028-2034 (2016). doi: 10.1002/adom.201600602 |
[152] | Li Z C, Liu W W, Cheng H, Chen S Q, Tian J G. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Opt Lett 41, 3142-3145 (2016). doi: 10.1364/OL.41.003142 |
[153] | Chen Y, Gao J, Yang X D. Direction-controlled bifunctional metasurface polarizers. Laser Photonics Rev 12, 1800198 (2018). doi: 10.1002/lpor.201800198 |
[154] | Chen Y, Yang X D, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl 8, 45 (2019). doi: 10.1038/s41377-019-0156-8 |
[155] | Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3, 870 (2012). doi: 10.1038/ncomms1877 |
[156] | Zhao Y, Askarpour A N, Sun L Y, Shi J W, Li X Q et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 8, 14180 (2017). doi: 10.1038/ncomms14180 |
[157] | Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671-10680 (2016). doi: 10.1021/acsnano.6b05453 |
[158] | Wang B, Dong F L, Li Q T, Yang D, Sun C W et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 16, 5235-5240 (2016). doi: 10.1021/acs.nanolett.6b02326 |
[159] | Hu Y Q, Luo X H, Chen Y Q, Liu Q, Li X et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8, 86 (2019). doi: 10.1038/s41377-019-0198-y |
[160] | Zhang X H, Pu M B, Guo Y H, Jin J J, Li X et al. Colorful metahologram with independently controlled images in transmission and reflection spaces. Adv Funct Mater 29, 1809145 (2019). doi: 10.1002/adfm.201809145 |
[161] | Wei Q S, Sain B, Wang Y T, Reineke B, Li X W et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett 19, 8964-8971 (2019). doi: 10.1021/acs.nanolett.9b03957 |
[162] | Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 15, 5358-5362 (2015). doi: 10.1021/acs.nanolett.5b01727 |
[163] | Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015). doi: 10.1126/science.aaa2494 |
[164] | Hu J T, Liu C H, Ren X C, Lauhon L J, Odom T W. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 10, 10275-10282 (2016). doi: 10.1021/acsnano.6b05855 |
[165] | Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). doi: 10.1364/OPTICA.3.000628 |
[166] | Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun 8, 14992 (2017). doi: 10.1038/ncomms14992 |
[167] | Yuan G H, Rogers E T, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci Appl 6, e17036 (2017). doi: 10.1038/lsa.2017.36 |
[168] | Zhou Y, Kravchenko II, Wang H, Nolen J R, Gu G et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett 18, 7529-7537 (2018). doi: 10.1021/acs.nanolett.8b03017 |
[169] | Shi Z J, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett 18, 2420-2427 (2018). doi: 10.1021/acs.nanolett.7b05458 |
[170] | Khorasaninejad M, Chen W T, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16, 3732-3737 (2016). doi: 10.1021/acs.nanolett.6b01097 |
[171] | Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625-632 (2017). doi: 10.1364/OPTICA.4.000625 |
[172] | Li G X, Chen S M, Pholchai N, Reineke B, Wong P W et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater 14, 607-612 (2015). doi: 10.1038/nmat4267 |
[173] | Wolf O, Campione S, Benz A, Ravikumar A P, Liu S et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat Commun 6, 7667 (2015). doi: 10.1038/ncomms8667 |
[174] | Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics 9, 180-184 (2015). doi: 10.1038/nphoton.2015.17 |
[175] | Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat Commun 7, 10367 (2016). doi: 10.1038/ncomms10367 |
[176] | Tymchenko M, Gomez-Diaz J S, Lee J, Nookala N, Belkin M A et al. Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces. Phys Rev B 94, 214303 (2016). doi: 10.1103/PhysRevB.94.214303 |
[177] | Chen S M, Li G X, Cheah K W, Zentgraf T, Zhang S. Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics 7, 1013-1024 (2018). doi: 10.1515/nanoph-2018-0011 |
[178] | Chen S M, Li G X, Zeuner F, Wong W H, Pun E Y B et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys Rev Lett 113, 033901 (2014). doi: 10.1103/PhysRevLett.113.033901 |
[179] | Konishi K, Higuchi T, Li J, Larsson J, Ishii S et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys Rev Lett 112, 135502 (2014). doi: 10.1103/PhysRevLett.112.135502 |
[180] | Schlickriede C, Waterman N, Reineke B, Georgi P, Li G X et al. Imaging through nonlinear metalens using second harmonic generation. Adv Mater 30, 1703843 (2018). doi: 10.1002/adma.201703843 |
[181] | Bar-David J, Levy U. Nonlinear diffraction in asymmetric dielectric metasurfaces. Nano Lett 19, 1044-1051 (2019). doi: 10.1021/acs.nanolett.8b04342 |
[182] | Li G X, Sartorello G, Chen S M, Nicholls L H, Li K F et al. Spin and geometric phase control four-wave mixing from metasurfaces. Laser Photonics Rev 12, 1800034 (2018). doi: 10.1002/lpor.201800034 |
[183] | Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533 (2016). doi: 10.1038/ncomms12533 |
[184] | Ye W M, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930 |
[185] | Li G X, Wu L, Li K F, Chen S M, Schlickriede C et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett 17, 7974-7979 (2017). doi: 10.1021/acs.nanolett.7b04451 |
[186] | Li Z, Liu W W, Li Z C, Tang C C, Cheng H et al. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev 12, 1800164 (2018). doi: 10.1002/lpor.201800164 |
[187] | Ma M L, Li Z, Liu W W, Tang C C, Li Z C et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser Photonics Rev 13, 1900045 (2019). doi: 10.1002/lpor.201900045 |
[188] | Nookala N, Lee J, Tymchenko M, Sebastian Gomez-Diaz J, Demmerle F et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 3, 283-288 (2016). doi: 10.1364/OPTICA.3.000283 |
[189] | Georgi P, Schlickriede C, Li G X, Zhang S, Zentgraf T. Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces. Optica 4, 1000-1005 (2017). doi: 10.1364/OPTICA.4.001000 |
[190] | Li G X, Zentgraf T, Zhang S. Rotational Doppler effect in nonlinear optics. Nat Phys 12, 736-740 (2016). doi: 10.1038/nphys3699 |
[191] | Czaplicki R, Husu H, Siikanen R, Mäkitalo J, Kauranen M et al. Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys Rev Lett 110, 093902 (2013). doi: 10.1103/PhysRevLett.110.093902 |
[192] | Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65-69 (2014). doi: 10.1038/nature13455 |
[193] | Celebrano M, Wu X F, Baselli M, Großmann S, Biagioni P et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10, 412-417 (2015). doi: 10.1038/nnano.2015.69 |
[194] | Li Z, Liu W W, Li Z C, Cheng H, Chen S Q et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation. Opt Lett 42, 3117-3120 (2017). doi: 10.1364/OL.42.003117 |
[195] | Liu S, Sinclair M B, Saravi S, Keeler G A, Yang Y M et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426-5432 (2016). doi: 10.1021/acs.nanolett.6b01816 |
[196] | Yang Y M, Wang W Y, Boulesbaa A, Kravchenko II, Briggs D P et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett 15, 7388-7393 (2015). doi: 10.1021/acs.nanolett.5b02802 |
[197] | Chen S M, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photonics 5, 1671-1675 (2018). doi: 10.1021/acsphotonics.7b01423 |
[198] | Koshelev K, Tang Y T, Li K F, Choi D Y, Li G X et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639-1644 (2019). doi: 10.1021/acsphotonics.9b00700 |
[199] | Chen S M, Reineke B, Li G X, Zentgraf T, Zhang S. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett 19, 6278-6283 (2019). doi: 10.1021/acs.nanolett.9b02417 |
[200] | Chen S M, Zeuner F, Weismann M, Reineke B, Li G X et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities. Adv Mater 28, 2992-2999 (2016). doi: 10.1002/adma.201505640 |
[201] | Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics 11, 628-633 (2017). doi: 10.1038/s41566-017-0002-6 |
[202] | Sartorello G, Olivier N, Zhang J J, Yue W S, Gosztola D J et al. Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3, 1517-1522 (2016). doi: 10.1021/acsphotonics.6b00108 |
[203] | Keren-Zur S, Tal M, Fleischer S, Mittleman D M, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat Commun 10, 1778 (2019). doi: 10.1038/s41467-019-09811-9 |
[204] | Yang M, Sheng P. Sound absorption structures: from porous media to acoustic metamaterials. Annu Rev Mater Res 47, 83-114 (2017). doi: 10.1146/annurev-matsci-070616-124032 |
[205] | Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P. Acoustic metasurface with hybrid resonances. Nat Mater 13, 873-878 (2014). doi: 10.1038/nmat3994 |
[206] | Yang M, Meng C, Fu C X, Li Y, Yang Z Y et al. Subwavelength total acoustic absorption with degenerate resonators. Appl Phys Lett 107, 104104 (2015). doi: 10.1063/1.4930944 |
[207] | Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl Phys Lett 109, 121902 (2016). doi: 10.1063/1.4962328 |
[208] | Jiménez N, Romero-García V, Pagneux V, Groby J P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys Rev B 95, 014205 (2017). doi: 10.1103/PhysRevB.95.014205 |
[209] | Jiang X, Liang B, Li R Q, Zou X Y, Yin L L et al. Ultra-broadband absorption by acoustic metamaterials. Appl Phys Lett 105, 243505 (2014). doi: 10.1063/1.4904887 |
[210] | Yang M, Chen S Y, Fu C X, Sheng P. Optimal sound-absorbing structures. Mater Horiz 4, 673-680 (2017). doi: 10.1039/C7MH00129K |
[211] | Cummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater 1, 16001 (2016). doi: 10.1038/natrevmats.2016.1 |
[212] | Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014). doi: 10.1038/lsa.2014.99 |
[213] | Xie B Y, Tang K, Cheng H, Liu Z Y, Chen S Q et al. Coding acoustic metasurfaces. Adv Mater 29, 1603507 (2017). doi: 10.1002/adma.201603507 |
[214] | Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713 |
[215] | Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci R ep 3, 2546 (2013). doi: 10.1038/srep02546 |
[216] | Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun 5, 5553 (2014). doi: 10.1038/ncomms6553 |
[217] | Li Y, Jiang X, Li R Q, Liang B, Zou X Y et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys Rev Appl 2, 064002 (2014). doi: 10.1103/PhysRevApplied.2.064002 |
[218] | Zhao J J, Li B W, Chen Z N, Qiu C W. Redirection of sound waves using acoustic metasurface. Appl Phys Lett 103, 151604 (2013). doi: 10.1063/1.4824758 |
[219] | Ding C L, Chen H J, Zhai S L, Liu S, Zhao X P. The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere. J Phys D: Appl Phys 48, 045303 (2015). doi: 10.1088/0022-3727/48/4/045303 |
[220] | Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T et al. Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci Rep 4, 6517 (2014). |
[221] | Mei J, Wu Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J Phys 16, 123007 (2014). doi: 10.1088/1367-2630/16/12/123007 |
[222] | Xie B Y, Cheng H, Tang K, Liu Z Y, Chen S Q et al. Multiband asymmetric transmission of airborne sound by coded metasurfaces. Phys Rev Appl 7, 024010 (2017). doi: 10.1103/PhysRevApplied.7.024010 |
[223] | Li Y, Shen C, Xie Y B, Li J F, Wang W Q et al. Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys Rev Lett 119, 035501 (2017). doi: 10.1103/PhysRevLett.119.035501 |
[224] | Shi C Z, Dubois M, Wang Y, Zhang X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc Natl Acad Sci USA 114, 7250-7253 (2017). doi: 10.1073/pnas.1704450114 |
[225] | Song K, Kim J, Hur S, Kwak J H, Lee S H et al. Directional reflective surface formed via gradient-impeding acoustic meta-surfaces. Sci Rep 6, 32300 (2016). doi: 10.1038/srep32300 |
[226] | Zhu Y F, Hu J, Fan X D, Yang J, Liang B et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat Commun 9, 1632 (2018). doi: 10.1038/s41467-018-04103-0 |
[227] | Tian Y, Wei Q, Cheng Y, Liu X J. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude. Appl Phys Lett 110, 191901 (2017). doi: 10.1063/1.4983282 |
[228] | Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516-519 (2014). doi: 10.1126/science.1246957 |
[229] | Yang Z J, Gao F, Shi X H, Lin X, Gao Z et al. Topological acoustics. Phys Rev Lett 114, 114301 (2015). doi: 10.1103/PhysRevLett.114.114301 |
[230] | Ni X, He C, Sun X C, Liu X P, Lu M H et al. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow. New J Phys 17, 053016 (2015). doi: 10.1088/1367-2630/17/5/053016 |
[231] | Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J et al. Experimental demonstration of acoustic chern insulators. Phys Rev Lett 122, 014302 (2019). doi: 10.1103/PhysRevLett.122.014302 |
[232] | Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys Rev Lett 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901 |
[233] | He C, Ni X, Ge H, Sun X C, Chen Y B et al. Acoustic topological insulator and robust one-way sound transport. Nat Phys 12, 1124-1129 (2016). doi: 10.1038/nphys3867 |
[234] | Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z et al. Observation of topological valley transport of sound in sonic crystals. Nat Phys 13, 369-374 (2017). doi: 10.1038/nphys3999 |
[235] | Lu J Y, Qiu C Y, Ke M Z, Liu Z Y. Valley vortex states in sonic crystals. Phys Rev Lett 116, 093901 (2016). doi: 10.1103/PhysRevLett.116.093901 |
[236] | Lu J Y, Qiu C Y, Deng W Y, Huang X Q, Li F et al. Valley topological phases in bilayer sonic crystals. Phys Rev Lett 120, 116802 (2018). doi: 10.1103/PhysRevLett.120.116802 |
[237] | Xiao M, Chen W J, He W Y, Chan C T. Synthetic gauge flux and Weyl points in acoustic systems. Nat Phys 11, 920-924 (2015). doi: 10.1038/nphys3458 |
[238] | Li F, Huang X Q, Lu J Y, Ma J H, Liu Z Y. Weyl points and Fermi arcs in a chiral phononic crystal. Nat Phys 14, 30-34 (2018). doi: 10.1038/nphys4275 |
[239] | Xie B Y, Liu H, Cheng H, Liu Z Y, Chen S Q et al. Experimental realization of type-II Weyl points and Fermi arcs in phononic crystal. Phys Rev Lett 122, 104302 (2019). doi: 10.1103/PhysRevLett.122.104302 |
[240] | Yang Y H, Sun H X, Xia J P, Xue H R, Gao Z et al. Topological triply degenerate point with double Fermi arcs. Nat Phys 15, 645-649 (2019). doi: 10.1038/s41567-019-0502-z |
[241] | Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat Phys 15, 582-588 (2019). doi: 10.1038/s41567-019-0472-1 |
[242] | Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L. Acoustic higher-order topological insulator on a kagome lattice. Nat Mater 18, 108-112 (2019). doi: 10.1038/s41563-018-0251-x |
[243] | Zhang Z W, Long H Y, Liu C, Shao C, Cheng Y et al. Deep-subwavelength holey acoustic second-order topological insulators. Adv Mater 31, 1904682 (2019). doi: 10.1002/adma.201904682 |
[244] | Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J. Elastic higher-order topological insulator with topologically protected corner states. Phys Rev Lett 122, 204301 (2019). doi: 10.1103/PhysRevLett.122.204301 |
[245] | Ezawa M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys Rev Lett 120, 026801 (2018). doi: 10.1103/PhysRevLett.120.026801 |
[246] | Benalcazar W A, Bernevig B A, Hughes T L. Quantized electric multipole insulators. Science 357, 61-66(2017). doi: 10.1126/science.aah6442 |
[247] | King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B 47, 1651-1654 (1993). doi: 10.1103/PhysRevB.47.1651 |
[248] | Serra-Garcia M, Peri V, Süsstrunk R, Bilal O R, Larsen T et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342-345 (2018). doi: 10.1038/nature25156 |
[249] | Keshavarz Hedayati M, Elbahri M. Review of metasurface plasmonic structural color. Plasmonics 12, 1463-1479 (2017). doi: 10.1007/s11468-016-0407-y |
[250] | Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg 5, 1 (2018). doi: 10.1186/s40580-017-0133-y |
[251] | Yang B, Cheng H, Chen S Q, Tian J G. Structural colors in metasurfaces: principle, design and applications. Mater Chem Front 3, 750-761 (2019). doi: 10.1039/C9QM00043G |
[252] | Tan S J, Zhang L, Zhu D, Goh X M, Wang Y M et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14, 4023-4029 (2014). doi: 10.1021/nl501460x |
[253] | Li Z Y, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183-188 (2015). doi: 10.1021/ph500410u |
[254] | Kumar K, Duan H G, Hegde R S, Koh S C W, Wei J N et al. Printing colour at the optical diffraction limit. Nat Nanotechnol 7, 557-561 (2012). doi: 10.1038/nnano.2012.128 |
[255] | Li Z B, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492-498 (2016). doi: 10.1021/acsnano.5b05411 |
[256] | Heydari E, Sperling J R, Neale S L, Clark A W. Plasmonic color filters as dual-state nanopixels for high-density microimage encoding. Adv Funct Mater 27, 1701866 (2017). doi: 10.1002/adfm.201701866 |
[257] | Dai P, Wang Y S, Zhu X P, Shi H M, Chen Y Q et al. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice. Nanotechnology 29, 395202 (2018). doi: 10.1088/1361-6528/aad110 |
[258] | Sun S, Zhou Z X, Zhang C, Gao Y S, Duan Z H et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445-4452 (2017). doi: 10.1021/acsnano.7b00415 |
[259] | Zhu X L, Yan W, Levy U, Mortensen N A, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv 3, e1602487 (2017). doi: 10.1126/sciadv.1602487 |
[260] | Park C S, Shrestha V R, Yue W J, Gao S, Lee S S et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci Rep 7, 2556 (2017). doi: 10.1038/s41598-017-02911-w |
[261] | Nagasaki Y, Suzuki M, Hotta I, Takahara J. Control of Si-based all-dielectric printing color through oxidation. ACS Photonics 5, 1460-1466 (2018). doi: 10.1021/acsphotonics.7b01467 |
[262] | Yang B, Liu W W, Li Z C, Cheng H, Chen S Q et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv Opt Mater 6, 1701009 (2018). doi: 10.1002/adom.201701009 |
[263] | Bao Y J, Yu Y, Xu H F, Guo C, Li J T et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2 |
[264] | Lim K T P, Liu H L, Liu Y J, Yang J K W. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun 10, 25 (2019). doi: 10.1038/s41467-018-07808-4 |
[265] | Yang B, Liu W W, Li Z C, Cheng H, Choi D Y et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett 19, 4221-4228 (2019). doi: 10.1021/acs.nanolett.8b04923 |
[266] | Pors A, Nielsen M G, Bernardin T, Weeber J C, Bozhevolnyi S I. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 3, e197 (2014). doi: 10.1038/lsa.2014.78 |
[267] | Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2, e70 (2013). doi: 10.1038/lsa.2013.26 |
[268] | Shaltout A, Liu J J, Kildishev A, Shalaev V. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2, 860-863 (2015). doi: 10.1364/OPTICA.2.000860 |
[269] | Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl 4, e290 (2015). doi: 10.1038/lsa.2015.63 |
[270] | Li Z C, Liu W W, Cheng H, Chen S Q, Tian J G. Manipulation of the photonic spin hall effect with high efficiency in gold-nanorod-based metasurfaces. Adv Opt Mater 5, 1700413 (2017). doi: 10.1002/adom.201700413 |
[271] | Liu Y C, Ke Y G, Luo H L, Wen S C. Photonic spin Hall effect in metasurfaces: a brief review. Nanophotonics 6, 51-70 (2017). doi: 10.1515/nanoph-2015-0155 |
[272] | Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Lett 11, 2038-2042 (2011). doi: 10.1021/nl2004835 |
[273] | Luo W J, Xiao S Y, He Q, Sun S L, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater 3, 1102-1108 (2015). doi: 10.1002/adom.201500068 |
[274] | Luo W J, Sun S L, Xu H X, He Q, Zhou L. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl 7, 044033 (2017). doi: 10.1103/PhysRevApplied.7.044033 |
[275] | Li W, Coppens Z J, Besteiro L V, Wang W Y, Govorov A O et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6, 8379 (2015). doi: 10.1038/ncomms9379 |
[276] | Wen D D, Yue F Y, Kumar S, Ma Y, Chen M et al. Metasurface for characterization of the polarization state of light. Opt Express 23, 10272-10281 (2015). doi: 10.1364/OE.23.010272 |
[277] | Wu P C, Chen J W, Yin C W, Lai Y C, Chung T L et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568-2573 (2018). doi: 10.1021/acsphotonics.7b01527 |
[278] | Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716-723 (2015). doi: 10.1364/OPTICA.2.000716 |
[279] | Balthasar Mueller J P, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter. Optica 3, 42-47 (2016). doi: 10.1364/OPTICA.3.000042 |
[280] | Pors A, Bozhevolnyi S I. Waveguide metacouplers for in-plane polarimetry. Phys Rev Appl 5, 064015 (2016). doi: 10.1103/PhysRevApplied.5.064015 |
[281] | Lee K, Yun H, Mun S E, Lee G Y, Sung J et al. Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev 12, 1700297 (2018). doi: 10.1002/lpor.201700297 |
[282] | Chen W T, Török P, Foreman M R, Liao C Y, Tsai W Y et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002 |
[283] | Ding F, Pors A, Chen Y T, Zenin V A, Bozhevolnyi S I. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4, 943-949 (2017). doi: 10.1021/acsphotonics.6b01046 |
[284] | Zhang X Q, Yang S M, Yue W S, Xu Q, Tian C X et al. Direct polarization measurement using a multiplexed Pancharatnam-Berry metahologram. Optica 6, 1190-1198 (2019). doi: 10.1364/OPTICA.6.001190 |
[285] | Sreekanth K V, Alapan Y, ElKabbash M, Ilker E, Hinczewski M et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15, 621-627 (2016). doi: 10.1038/nmat4609 |
[286] | Yavas O, Svedendahl M, Dobosz P, Sanz V, Quidant R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett 17, 4421-4426 (2017). doi: 10.1021/acs.nanolett.7b01518 |
[287] | Salim A, Lim S. Review of recent metamaterial microfluidic sensors. Sensors 18, 232 (2018). doi: 10.3390/s18010232 |
[288] | Li Z Y, Zhu Y B, Hao Y F, Gao M, Lu M et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein. ACS Photonics 6, 501-509 (2019). doi: 10.1021/acsphotonics.8b01470 |
[289] | Liu B W, Chen S, Zhang J C, Yao X, Zhong J H et al. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv Mater 30, 1706031 (2018). doi: 10.1002/adma.201706031 |
[290] | Zhu Y B, Li Z Y, Hao Z, DiMarco C, Maturavongsadit P et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci Appl 7, 67 (2018). doi: 10.1038/s41377-018-0066-1 |
[291] | Sreekanth K V, Sreejith S, Han S, Mishra A, Chen X X et al. Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nat Commun 9, 369 (2018). doi: 10.1038/s41467-018-02860-6 |
[292] | Lee Y, Kim S J, Park H, Lee B. Metamaterials and metasurfaces for sensor applications. Sensors 17, 1726 (2017). doi: 10.3390/s17081726 |
[293] | Gallinet B, Martin O J F. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano 7, 6978-6987 (2013). doi: 10.1021/nn4021967 |
[294] | Yang Y M, Kravchenko I I, Briggs D P, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5, 5753 (2014). doi: 10.1038/ncomms6753 |
[295] | Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H et al. High-quality-factor multiple Fano resonances for refractive index sensing. Opt Lett 43, 1842-1845 (2018). doi: 10.1364/OL.43.001842 |
[296] | Liu H G, Zheng L, Ma P Z, Zhong Y, Liu B et al. Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing. Opt Express 27, 13252-13262 (2019). doi: 10.1364/OE.27.013252 |
[297] | Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9, 707-715 (2010). doi: 10.1038/nmat2810 |
[298] | Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nat Photonics 11, 543-554 (2017). doi: 10.1038/nphoton.2017.142 |
[299] | Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[300] | Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 8, 725-745 (2019). doi: 10.1515/nanoph-2019-0024 |
[301] | Liu M K, Choi D Y. Extreme Huygens' metasurfaces based on quasi-bound states in the continuum. Nano Lett 18, 8062-8069 (2018). doi: 10.1021/acs.nanolett.8b04774 |
[302] | Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett 121, 193903 (2018). doi: 10.1103/PhysRevLett.121.193903 |
[303] | Tittl A, Leitis A, Liu M K, Yesilkoy F, Choi D Y et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105-1109 (2018). doi: 10.1126/science.aas9768 |
[304] | Leitis A, Tittl A, Liu M K, Lee B H, Gu M B et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci Adv 5, eaaw2871 (2019). doi: 10.1126/sciadv.aaw2871 |
[305] | Yesilkoy F, Arvelo E R, Jahani Y, Liu M K, Tittl A et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 13, 390-396 (2019). doi: 10.1038/s41566-019-0394-6 |
[306] | Guo Q, Shi Z J, Huang Y W, Alexander E, Qiu C W et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc Natl Acad Sci USA 116, 22959-22965 (2019). doi: 10.1073/pnas.1912154116 |
[307] | Georgi P, Massaro M, Luo K H, Sain B, Montaut N et al. Metasurface interferometry toward quantum sensors. Light Sci Appl 8, 70 (2019). doi: 10.1038/s41377-019-0182-6 |
[308] | Walter F, Li G X, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 17, 3171-3175 (2017). doi: 10.1021/acs.nanolett.7b00676 |
[309] | Tang Y T, Intaravanne Y, Deng J H, Li K F, Chen X Z et al. Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl 12, 024028 (2019). doi: 10.1103/PhysRevApplied.12.024028 |
[310] | Zhang X H, Pu M B, Jin J J, Li X, Gao P et al. Helicity multiplexed spin-orbit interaction in metasurface for colorized and encrypted holographic display. Ann Phys 529, 1700248 (2017). doi: 10.1002/andp.201700248 |
[311] | Yue F Y, Zhang C M, Zang X F, Wen D D, Gerardot B D et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl 7, 17129 (2018). doi: 10.1038/lsa.2017.129 |
[312] | Zhang C M, Dong F L, Intaravanne Y, Zang X F, Xu L H et al. Multichannel metasurfaces for anticounterfeiting. Phys Rev Appl 12, 034028 (2019). doi: 10.1103/PhysRevApplied.12.034028 |
[313] | Ren H R, Briere G, Fang X Y, Ni P N, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
[314] | Li J X, Kamin S, Zheng G X, Neubrech F, Zhang S et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 4, eaar6768 (2018). doi: 10.1126/sciadv.aar6768 |
[315] | Duan X Y, Liu N. Scanning plasmonic color display. ACS Nano 12, 8817-8823 (2018). doi: 10.1021/acsnano.8b05467 |
[316] | Backlund M P, Arbabi A, Petrov P N, Arbabi E, Saurabh S et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat Photonics 10, 459-462 (2016). doi: 10.1038/nphoton.2016.93 |
[317] | Pahlevaninezhad H, Khorasaninejad M, Huang Y W, Shi Z J, Hariri L P et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat Photonics 12, 540-547 (2018). doi: 10.1038/s41566-018-0224-2 |
[318] | Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging. Sci Adv 4, eaar2114 (2018). doi: 10.1126/sciadv.aar2114 |
[319] | Chen C, Song W G, Chen J W, Wang J H, Chen Y H et al. Spectral tomographic imaging with aplanatic metalens. Light Sci Appl 8, 99 (2019). doi: 10.1038/s41377-019-0208-0 |
[320] | Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). doi: 10.1126/science.aac9411 |
[321] | Yang Y H, Jing L Q, Zheng B, Hao R, Yin W Y et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater 28, 6866-6871 (2016). doi: 10.1002/adma.201600625 |
[322] | Zhang J, Mei Z L, Zhang W R, Yang F, Cui T J. An ultrathin directional carpet cloak based on generalized Snell's law. Appl Phys Lett 103, 151115 (2013). doi: 10.1063/1.4824898 |
[323] | Orazbayev B, Mohammadi Estakhri N, Alù A, Beruete M. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Adv Opt Mater 5, 1600606 (2017). doi: 10.1002/adom.201600606 |
[324] | Chu H C, Li Q, Liu B B, Luo J, Sun S L et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci Appl 7, 50 (2018). doi: 10.1038/s41377-018-0052-7 |
[325] | Wu Y K, Yang W H, Fan Y B, Song Q H, Xiao S M. TiO2 metasurfaces: From visible planar photonics to photochemistry. Sci Adv 5, eaax0939 (2019). doi: 10.1126/sciadv.aax0939 |
[326] | Xie Y B, Shen C, Wang W Q, Li J F, Suo D J et al. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci Rep 6, 35437 (2016). doi: 10.1038/srep35437 |
[327] | Melde K, Mark A G, Qiu T, Fischer P. Holograms for acoustics. Nature 537, 518-522 (2016). doi: 10.1038/nature19755 |
[328] | Yang Y H, Wang H P, Yu F X, Xu Z W, Chen H S. A metasurface carpet cloak for electromagnetic, acoustic and water waves. Sci Rep 6, 20219 (2016). doi: 10.1038/srep20219 |
[329] | Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nat Commun 9, 4920 (2018). doi: 10.1038/s41467-018-07315-6 |
[330] | Li Y, Assouar B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl Phys Lett 108, 063502 (2016). doi: 10.1063/1.4941338 |
[331] | Shen C, Cummer S A. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces. Phys Rev Appl 9, 054009 (2018). doi: 10.1103/PhysRevApplied.9.054009 |
[332] | Merkel A, Theocharis G, Richoux O, Romero-García V, Pagneux V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl Phys Lett 107, 244102 (2015). doi: 10.1063/1.4938121 |
[333] | Kaina N, Lemoult F, Fink M, Lerosey G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77-81 (2015). doi: 10.1038/nature14678 |
[334] | Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7, 52-55 (2011). doi: 10.1038/nphys1804 |
[335] | He H L, Qiu C Y, Ye L P, Cai X X, Fan X Y et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61-64 (2018). doi: 10.1038/s41586-018-0367-9 |
[336] | Xie B Y, Liu H, Cheng H, Liu Z Y, Chen S Q et al. Acoustic topological transport and refraction in a Kekulé Lattice. Phys Rev Appl 11, 044086 (2019). doi: 10.1103/PhysRevApplied.11.044086 |
[337] | Chen Y, Yang X D, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci Appl 7, 84 (2018). doi: 10.1038/s41377-018-0086-x |
[338] | Li Z C, Liu W W, Cheng H, Liu J Y, Chen S Q et al. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface. Sci Rep 6, 35485 (2016). doi: 10.1038/srep35485 |
[339] | Zhang F, Pu M B, Li X, Gao P, Ma X L et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295 |
[340] | Xie Z W, Lei T, Si G Y, Wang X Y, Lin J et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158-2164 (2017). doi: 10.1021/acsphotonics.7b00710 |
[341] | Wang B, Dong F L, Yang D, Song Z W, Xu L H et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica 4, 1368-1371 (2017). doi: 10.1364/OPTICA.4.001368 |
[342] | Jin L, Dong Z G, Mei S T, Yu Y F, Wei Z et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Lett 18, 8016-8024 (2018). doi: 10.1021/acs.nanolett.8b04246 |
[343] | Ma W, Cheng F, Liu Y M. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326-6334 (2018). doi: 10.1021/acsnano.8b03569 |
[344] | Liu D J, Tan Y X, Khoram E, Yu Z F. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365-1369 (2018). doi: 10.1021/acsphotonics.7b01377 |
[345] | Zhang Q, Liu C, Wan X, Zhang L, Liu S et al. Machine-learning designs of anisotropic digital coding metasurfaces. Adv Theory Simul 2, 1800132 (2019). doi: 10.1002/adts.201800132 |
[346] | Yao K, Unni R, Zheng Y B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8, 339-366 (2019). doi: 10.1515/nanoph-2018-0183 |
[347] | Liu Z W, Yan S, Liu H G, Chen X F. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys Rev Lett 123, 183902 (2019). doi: 10.1103/PhysRevLett.123.183902 |
[348] | Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R. Subwavelength integrated photonics. Nature 560, 565-572 (2018). doi: 10.1038/s41586-018-0421-7 |
[349] | Genevet P, Lin J, Kats M A, Capasso F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun 3, 1278 (2012). doi: 10.1038/ncomms2293 |
[350] | Sun S L, He Q, Xiao S Y, Xu Q, Li X et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11, 426-431 (2012). doi: 10.1038/nmat3292 |
[351] | Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331-334 (2013). doi: 10.1126/science.1233746 |
[352] | Sun W J, He Q, Sun S L, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 5, e16003 (2016). doi: 10.1038/lsa.2016.3 |
[353] | Genevet P, Wintz D, Ambrosio A, She A, Blanchard R et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat Nanotechnol 10, 804-809 (2015). doi: 10.1038/nnano.2015.137 |
[354] | Vercruysse D, Neutens P, Lagae L, Verellen N, Van Dorpe P. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide. ACS Photonics 4, 1398-1402 (2017). doi: 10.1021/acsphotonics.7b00038 |
[355] | Bernal Arango F, Kwadrin A, Koenderink A F. Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 6, 10156-10167 (2012). doi: 10.1021/nn303907r |
[356] | Guo R, Decker M, Setzpfandt F, Gai X, Choi D Y et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci Adv 3, e1700007 (2017). doi: 10.1126/sciadv.1700007 |
[357] | Guo Y H, Pu M B, Li X, Ma X L, Song S C et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE J Sel Top Quantum Electron 24, 1-7 (2018). |
[358] | Zhang Y B, Li Z C, Liu W W, Li Z, Cheng H et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces. Adv Opt Mater 7, 1801273 (2019). doi: 10.1002/adom.201801273 |
[359] | Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9, 374-377 (2015). doi: 10.1038/nphoton.2015.69 |
[360] | Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q et al. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica 6, 1367-1373 (2019). doi: 10.1364/OPTICA.6.001367 |
[361] | Ohana D, Desiatov B, Mazurski N, Levy U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett 16, 7956-7961 (2016). doi: 10.1021/acs.nanolett.6b04264 |
[362] | Shen B, Wang P, Polson R, Menon R. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat Photonics 9, 378-382 (2015). doi: 10.1038/nphoton.2015.80 |
[363] | Li Z Y, Kim M H, Wang C, Han Z H, Shrestha S et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol 12, 675-683 (2017). doi: 10.1038/nnano.2017.50 |
[364] | Wang C, Li Z Y, Kim M H, Xiong X, Ren X F et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6 |
[365] | Li S F, Zhao D G, Niu H, Zhu X F, Zang J F. Observation of elastic topological states in soft materials. Nat Commun 9, 1370 (2018). doi: 10.1038/s41467-018-03830-8 |
[366] | Mousavi S H, Khanikaev A B, Wang Z. Topologically protected elastic waves in phononic metamaterials. Nat Commun 6, 8682 (2015). doi: 10.1038/ncomms9682 |
[367] | Yu S Y, He C, Wang Z, Liu F K, Sun X C et al. Elastic pseudospin transport for integratable topological phononic circuits. Nat Commun 9, 3072 (2018). doi: 10.1038/s41467-018-05461-5 |
[368] | Li N B, Ren J, Wang L, Zhang G, Hänggi P et al. Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 84, 1045-1066 (2012). |
[369] | Guo Y N, Dekorsy T, Hettich M. Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures. Sci Rep 7, 18043 (2017). doi: 10.1038/s41598-017-18394-8 |
[370] | Ren J, Liu S, Li B W. Geometric heat flux for classical thermal transport in interacting open systems. Phys Rev Lett 108, 210603 (2012). doi: 10.1103/PhysRevLett.108.210603 |
Overview of the multidimensional manipulation of wave fields based on artificial microstructures.
(a) Schematic of the C-shaped antenna used to control the phase and amplitude of linearly polarized light simultaneously (upper panel) and simulated transmission amplitude and phase of an antenna array for different orientation angle θ (lower panel). (b) Simulated amplitude and phase of the transmitted y-polarized light for different antennas with different orientation angle θ and geometrical parameters under x-polarized normal incidence. (c) Upper panel: simulated amplitude of the converted CP light for different nanorods with different lengths. Inset shows the schematic of the gold nanorod. Lower panels: simulated electric field distributions of the Airy beams with simplified amplitude modulation (left) and without amplitude modulation (right). (d) Simulated and measured cross-polarized transmission for X-shaped structures with different intersection angles (upper panel) and schematic of the designed hologram (lower panel). (e) Upper panels: amplitude and phase profiles of the designed hologram. Lower panels: simulated and measured holographic images at proper image planes. (f) Left panel: schematic of the bilayer metasurface that can generate complex amplitude holograms. Right panels: phase (upper) and amplitude (lower) profiles of the designed hologram. (g) Upper panel: schematic of the structures used to independently and completely control the transmitted phase and amplitude. Lower panels: simulated phase and amplitude for structures with different lengths and rotation angles. (h) Measured holographic images at different observation angles. The upper two images correspond to the metasurface with a phase gradient. The lower two images correspond to the metasurface with same intensity distributions as the upper metasurface but without phase gradient. (i) Left panels: schematic of the energy tailorable multifunctional metasurface (upper) and measured light distributions of three vortex beams with order of 3, 1, 0, respectively (lower). Right panels: the designed (red), calculated (blue) and measured (green) energies of each functionality for different samples (upper) and measured image of 1951 USAF resolution test target realized by a metasurface (lower). Figure reproduced from: (a-b) ref.53, Wiley-VCH; (c) ref.58, Wiley-VCH; (d-e) ref.60, Royal Society of Chemistry; (f) ref.61, Nature Publishing Group; (g-h) ref.62, Nature Publishing Group; (i) ref.63, Wiley-VCH.
(a) Schematic of the reflective polarization generators based on phase gradient metasurfaces. (b) The simulated polarization conversion efficiency for each polarization. (c) Left: schematic of the bilayer nano-aperture structure used to control the polarization and phase simultaneously. Middle: schematics of the polarization and phase realized by nano-aperture pairs with various dimensions and orientations. Right: measured far-field intensity distributions of the generated radially polarized beam without and with a linear polarizer (oriented at angle θ) intercepted before the camera. (d) Left: schematic of the metasurface that can generate and focus the radially and azimuthally polarized light for different LP incident beams. Middle: simulated and measured intensity distributions of the vector beams. Right: optical (bottom) and scanning electron (top) microscope images of the metasurface. (e) Schematic of the diatomic metasurface for vectorial holography. (f) Upper panels: schematic of the metasurface that can implement two independent and arbitrary phase profiles on any pair of orthogonal polarization states by combining both propagation phase and PB phase. Lower panels: measured images of the chiral holograms for different CP incident light. (g) Schematic of the arbitrary SOC (left) and the typical J-plate design (right). Figure reproduced from: (a-b) ref.79, American Chemical Society; (c) ref.83, Wiley-VCH; (d) ref.85, Nature Publishing Group; (e) ref.87, American Chemical Society; (f) ref.95, American Physical Society; (g) ref.100, American Association for the Advancement of Science.
(a) Schematic of the metasurface that enables asymmetric transmission of CP light. Simulated (solid lines) and measured (circles) Jones matrix of the metasurface on linear (b) and logarithmic (c) scales. (d) Schematic of the optical response of the planar chiral metasurface. Measured zeroth-order transmission spectra (e), CD spectra (f) and circular birefringence spectra (g) of the planar chiral metasurface. (h) Schematic of the 3D Janus helical structures in two enantiomeric forms. (i) Measured transmission spectra and CDTF spectrum of the metasurface in form A for different CP incident light in the forward direction. (j) Measured transmission spectra and LDTB spectrum of the metasurface in form A for different LP incident light in the backward direction. (k) Measured transmission spectrum for different azimuthal angles of the LP incident light. Figure reproduced from: (a-c) ref.114, American Physical Society; (d-g) ref.148, Nature Publishing Group; (h-k) ref.154, Nature Publishing Group.
(a) Schematic of the THG signals and their phases for C2 and C4 nanostructures. (b) Measured THG signals from the C2/PFO and C4/PFO metasurfaces with a phase gradient of the nonlinearity. (c) Schematic of the anomalous phase matching condition for phase gradient metasurfaces. (d) Measured (blue circles), calculated (black line) and simulated (red squares) FWM emission angle as a function of the grating periodicity. (e) Left panels: schematic of the V-shaped gold antennas (upper) and the nonlinear hologram metasurfaces that work at THG wavelength (lower). Right panel: the phase of the THG signals for V-shaped antennas with different arm lengths and intersection angles. (f) Schematic of the linear and nonlinear PB phases for a split ring resonator. (g) Schematic of the nonlinear metasurface that can generate different SHG holographic images for different CP states. (h) Schematic of the nonlinear metasurface that can simultaneously generate three focused optical vortices with different topological charges and different focal lengths. (i) Schematic of the unit cell of the nonlinear phase gradient metasurface based on quantum well structure. (j) Far field profiles of RCP and LCP second harmonic wave output from the metasurfaces with different phase gradients. Figure reproduced from: (a-b) ref.172, Nature Publishing Group; (c-d) ref.175, Nature Publishing Group; (e) ref.183, Nature Publishing Group; (f-g) ref.184, Nature Publishing Group; (h) ref.186, Wiley-VCH; (i-j) ref.188, Optical Society of America.
(a) Schematic of the folded Fabry-Pérot tube array for realizing structures with target-set absorption spectra. (b) Absorption spectra caused by Fabry-Pérot resonance, which is close to the theoretical limit in the semi-infinite frequency range. (c) The transmission phase of two coding elements. (d) Simulated far field distribution (upper) and simulated (lower left) and measured (lower right) field amplitude distributions of the transmitted waves divided into four beams when coding elements are distributed in a checkerboard pattern. (e) Schematic of generalized Snell's law realized by a series of tapered labyrinthine metamaterials (upper) and the phase changes of six types of unit cells (lower). (f) Measured anomalous refraction caused by controlling the wavefront phase with arrangement of the unit cells. (g) The decoupled effect of amplitude-phase (lower) caused by the holey structured lossy acoustic metamaterial (upper). (h) Upper panels: amplitude (left) and phase (right) profiles of the lossy acoustic metamaterial for generating the Airy beam. Lower panels: comparison of the Airy beam formed by amplitude phase modulation (APM) (left) and Phase modulation (PM) (right). Figure reproduced from: (a-b) ref.210, Royal Society of Chemistry; (c-d) ref.213, Wiley-VCH; (e-f) ref.216, Nature Publishing Group; (g-h) ref.226, Nature Publishing Group.
(a) Schematic of the topological Chern insulators (upper) and the projected band diagram of the sonic crystal (lower). The red and blue lines represent the edge states distributed on different edges. (b) Upper panel: schematic of the transmission of the acoustic quantum spin hall effect. Lower panel: calculated projected band diagram of the topological phononic crystal. The red and blue lines represent two pairs of interface states with opposite propagation directions distributed on different interfaces. (c) Upper panels: schematic of the two dimensional acoustic phononic crystal (left) and the valley states (right). Lower panels: the band diagram (left) and the band transition diagram (right). (d) Schematic of the phononic crystal of type-I Weyl points (left) and the distribution of type-I Weyl points in Brillouin zone (middle). Fourier transforms of the surface wave fields on the XZ plane that show the Fermi arc of type-I Weyl points(right). (e) Schematic of the phononic crystal of type- II Weyl points (left) and the distribution of type- II Weyl points in Brillouin zone (middle). Fourier transforms of the surface wave fields on the XZ1 plane that show the Fermi arc of type-II Weyl points (right). (f) Upper panels: schematic of the quantized quadrupole (left), the corresponding tight bound model (middle) and the corresponding structural unit (right). Middle panels: diagram of experimental equipment (left) and the corresponding distribution of the bulk, edge and corner response at an arbitrary frequency (72.0 kHz) (right). Lower panel: the frequency regions of bulk, edge and corner states. Figure reproduced from: (a) ref.230, Institute of Physics; (b) ref.233, Nature Publishing Group; (c) ref.234, Nature Publishing Group; (d) ref.238, Nature Publishing Group; (e) ref.239, American Physical Society; (f) ref.248, Nature Publishing Group.
(a) Left panel: schematic of the metasurface based on multi-dielectric stacked layer structures that can realize ultrahigh saturation structural colors. Right panel: the simulated CIE 1931 chromaticity coordinates for the samples with different periods and gaps. (b) Schematic of the multiplexed hologram metasurface that can realize direct polarization measurement. (c) Schematic of the angle-multiplexed all-dielectric metasurface (upper) and the reflection spectra of the metasurface for different incident angles (lower). (d) Normalized reflection spectra of the metasurface before (upper) and after (middle) coating a polymethyl methacrylate (PMMA) layer. Lower panel: absorption spectrum obtained from the measured reflection spectra (black line) and absorption spectrum of a PMMA layer on a gold surface obtained from standard infrared reflection absorption spectroscopy measurement (orange dashed line). (e) Design approach (upper left) anld experimental characterization (upper right and lower panels) of an OAM-multiplexing hologram metasurface that can encode different holographic images into different OAM channels. Figure reproduced from: (a) ref.265, American Chemical Society; (b) ref.284, Optical Society of America; (c-d) ref.304, American Association for the Advancement of Science.; (e) ref.313, Nature Publishing Group.
(a) Schematic of the process of acoustic hologram imaging. Left panels: target image and phase distribution of target image. Middle panel: the metamaterial corresponding to the phase distribution. Right panels: workflow for acoustic metamaterial reconstructing target acoustic images. (b) Scheme of a metasurface carpet cloak. The black arrows are the incident waves; the blue arrows and red arrows are the reflected waves with and without metasurface carpet cloak. (c) A typical unit cell of the metasurface carpet cloak and its corresponding S11 parameters. (d) Left panels: Schematic of the unit cell of flat acoustic superlens and the flat acoustic superlens. Reft panels: experimental demonstration of subwavelength focusing (upper) and imaging (lower) using a flat acoustic superlens. (e) Upper panels: schematic of the Weyl phononic crystal and its unit cell. Lower panel: the experimental observation of topological negative refraction. (f) Upper panels: schematic of the sonic crystal based on Kekulé lattice (left) and the k-space analysis on the outcoupling of armchair termination at f = 5.6 kHz (middle) and zigzag terminations at f = 5.8 kHz (right). Lower panels: the measurements (upper) and simulations (lower) of three types of topological acoustic antennas corresponding to zigzag domain walls and armchair terminations (left and middle), the armchair domain wall and the zigzag termination (right). Figure reproduced from: (a) ref.327, Nature Publishing Group; (b-c) ref.328, Nature Publishing Group; (d) ref.333, Nature Publishing Group; (e) ref.335, Nature Publishing Group; (f) ref.336, American Physical Society.