Vijayakumar A, Katkus T, Lundgaard S, Linklater D P, Ivanova E P et al. Fresnel incoherent correlation holography with single camera shot. Opto-Electron Adv 3, 200004 (2020). doi: 10.29026/oea.2020.200004
Citation: Vijayakumar A, Katkus T, Lundgaard S, Linklater D P, Ivanova E P et al. Fresnel incoherent correlation holography with single camera shot. Opto-Electron Adv 3, 200004 (2020). doi: 10.29026/oea.2020.200004

Original Article Open Access

Fresnel incoherent correlation holography with single camera shot

More Information
  • Fresnel incoherent correlation holography (FINCH) is a self-interference based super-resolution three-dimensional imaging technique. FINCH in inline configuration requires an active phase modulator to record at least three phase-shifted camera shots to reconstruct objects without twin image and bias terms. In this study, FINCH is realized using a randomly multiplexed bifocal binary diffractive Fresnel zone lenses fabricated using electron beam lithography. The object space is calibrated by axially scanning a point object along the optical axis and recording the corresponding point spread holograms (PSHs). An object is mounted within the calibrated object space, and the object hologram was recorded under identical experimental conditions used for recording the PSHs. The image of the object at different depths was reconstructed by a cross-correlation between the object hologram and the PSHs. Application potential including bio-medical optics is discussed.
  • 加载中
  • [1] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography. Opt Lett 32, 912-914 (2007). doi: 10.1364/OL.32.000912

    CrossRef Google Scholar

    [2] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photon 2, 190-195 (2008). doi: 10.1038/nphoton.2007.300

    CrossRef Google Scholar

    [3] Poon T C. Optical scanning holography - A review of recent progress. J Opt Soc Korea 13, 406-415 (2009). doi: 10.3807/JOSK.2009.13.4.406

    CrossRef Google Scholar

    [4] Brooker G, Siegel N, Wang V, Rosen J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt Express 19, 5047-5062 (2011). doi: 10.1364/OE.19.005047

    CrossRef Google Scholar

    [5] Rosen J, Siegel N, Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt Express 19, 26249-26268 (2011). doi: 10.1364/OE.19.026249

    CrossRef Google Scholar

    [6] Katz B, Rosen J, Kelner R, Brooker G. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM). Opt Express 20, 9109-9121(2012). doi: 10.1364/OE.20.009109

    CrossRef Google Scholar

    [7] Kelner R, Rosen J. Spatially incoherent single channel digital Fourier holography. Opt Lett 37, 3723-3725 (2012). doi: 10.1364/OL.37.003723

    CrossRef Google Scholar

    [8] Tahara T, Kanno T, Arai Y, Ozawa T. Single-shot phase-shifting incoherent digital holography. J Opt 19, 065705 (2017). doi: 10.1088/2040-8986/aa6e82

    CrossRef Google Scholar

    [9] Nobukawa T, Muroi T, Katano Y, Kinoshita N, Ishii N. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt Lett 43, 1698-1701 (2018). doi: 10.1364/OL.43.001698

    CrossRef Google Scholar

    [10] Quan X Y, Matoba O, Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt Lett 42, 383-386 (2017). doi: 10.1364/OL.42.000383

    CrossRef Google Scholar

    [11] Hong J, Kim M K. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt Lett 38, 5196-5199 (2013). doi: 10.1364/OL.38.005196

    CrossRef Google Scholar

    [12] Liang D, Zhang Q, Wang J, Liu J. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J Mod Opt 67, 92-98 (2020). doi: 10.1080/09500340.2019.1695970

    CrossRef Google Scholar

    [13] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [14] Fan H, Cao X W, Wang L, Li Z Z, Chen Q D et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse. Opt Lett 44, 5149-5152 (2019). doi: 10.1364/OL.44.005149

    CrossRef Google Scholar

    [15] Vijayakumar A, Kashter Y, Kelner R, Rosen J. Coded aperture correlation holography - a new type of incoherent digital holograms. Opt Express 24, 12430-12441 (2016). doi: 10.1364/OE.24.012430

    CrossRef Google Scholar

    [16] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography - a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883-13896 (2017). doi: 10.1364/OE.25.013883

    CrossRef Google Scholar

    [17] Rai M R, Vijayakumar A, Rosen J. Non-linear Adaptive Three-Dimensional Imaging with interferenceless coded aperture correlation holography (I-COACH). Opt Express 26, 18143-18154 (2018). doi: 10.1364/OE.26.018143

    CrossRef Google Scholar

    [18] Rai M R, Vijayakumar A, Ogura Y, Rosen J. Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns. Opt Express 27, 391-403 (2019). doi: 10.1364/OE.27.000391

    CrossRef Google Scholar

    [19] Rosen J, Brooker G. Fresnel incoherent correlation holography (FINCH) - A review of research, Adv Opt Technol 1, 151-169 (2012).

    Google Scholar

    [20] Rosen J, Vijayakumar A, Kumar M, Rai M R, Kelner R, et al. Recent advances in self-interference incoherent digital holography. Adv Opt Photonics 11, 1-66 (2019). doi: 10.1364/AOP.11.000001

    CrossRef Google Scholar

    [21] Rosen J, Kelner R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt Express 22, 29048-29066 (2014) doi: 10.1364/OE.22.029048

    CrossRef Google Scholar

    [22] Vijayakumar A, Bhattacharya S. Characterization and correction of spherical aberration due to glass substrate in the design and fabrication of Fresnel zone lenses. Appl Opt 52, 5932-5940 (2013). doi: 10.1364/AO.52.005932

    CrossRef Google Scholar

    [23] Perez V, Chang B. -J, Stelzer E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution. Sci Rep 6, 37149 (2016).

    Google Scholar

    [24] Linklater D P, Juodkazis S, RubanovS, Ivanova E P. Comment on "Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli". ACS Appl Mater Interfaces 9, 29387-29393 (2017). doi: 10.1021/acsami.7b05707

    CrossRef Google Scholar

    [25] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE T Image process, 13, 600-612 (2004).

    Google Scholar

    [26] Siegel N, Lupashin V, Storrie B, Brooker G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat Photonics 10, 802-808 (2016). doi: 10.1038/nphoton.2016.207

    CrossRef Google Scholar

  •    Supplementary information for Fresnel incoherent correlation holography with single camera shot
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint