Citation: | Zanotto L, Piccoli R, Dong J L, Morandotti R, Razzari L. Single-pixel terahertz imaging: a review. Opto-Electron Adv 3, 200012 (2020). doi: 10.29026/oea.2020.200012 |
[1] | Mittleman D M. Twenty years of terahertz imaging [Invited]. Opt Express 26, 9417-9431 (2018). doi: 10.1364/OE.26.009417 |
[2] | Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging. IEEE J Sel Top Quantum Electron 2, 679-692 (1996). doi: 10.1109/2944.571768 |
[3] | Liu H B, Zhong H, Karpowicz N, Chen Y Q, Zhang X C. Terahertz spectroscopy and imaging for defense and security applications. Proc IEEE 95, 1514-1527 (2007). doi: 10.1109/JPROC.2007.898903 |
[4] | Stoik C, Bohn M, Blackshire J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT E Int 43, 106-115 (2010). doi: 10.1016/j.ndteint.2009.09.005 |
[5] | Blanchard F, DoiA, Tanaka T, Tanaka K. Real-time, subwavelength terahertz imaging. Annu Rev Mater Res 43, 237-259 (2013). doi: 10.1146/annurev-matsci-071312-121656 |
[6] | Jacobsen R H, Mittleman D M, Nuss M C. Chemical recognition of gases and gas mixtures with terahertz waves. Opt Lett 21, 2011-2013 (1996). doi: 10.1364/OL.21.002011 |
[7] | Parrott E P J, Zeitler J A. Terahertz time-domain and low-frequency raman spectroscopy of organic materials. Appl Spectrosc 69, 1-25 (2015). doi: 10.1366/14-07707 |
[8] | Baxter J B, Guglietta G W. Terahertz spectroscopy. Anal Chem 83, 4342-4368 (2011). doi: 10.1021/ac200907z |
[9] | Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications. Laser Photon Rev 5, 124-166 (2011). doi: 10.1002/lpor.201000011 |
[10] | Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl Phys Lett 86, 241116 (2005). doi: 10.1063/1.1946192 |
[11] | Duling I, Zimdars D. Revealing hidden defects. Nat Photon 3, 630-632 (2009). doi: 10.1038/nphoton.2009.206 |
[12] | Jördens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng 47, 037003 (2008). doi: 10.1117/1.2896597 |
[13] | Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N et al. Terahertz imaging: Applications and perspectives. Appl Opt 49, E48-E57 (2010). doi: 10.1364/AO.49.000E48 |
[14] | Sun Q S, He Y Z, Liu K, Fan S T, Parrott E P J et al. Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg 7, 345-355 (2017). doi: 10.21037/qims.2017.06.02 |
[15] | Yang X, Zhao X, Yang K, Liu Y P, Liu Y et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34, 810-824 (2016). doi: 10.1016/j.tibtech.2016.04.008 |
[16] | Naccache R, Mazhorova A, Clerici M, Piccoli R, Khorashad L K et al. Terahertz thermometry: combining hyperspectral imaging and temperature mapping at terahertz frequencies. Laser Photon Rev 11, 1600342 (2017). doi: 10.1002/lpor.201600342 |
[17] | Koch-Dandolo C L, Filtenborg T, Fukunaga K, Skou-Hansen J, Jepsen P U. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting. Appl Opt 54, 5123-5129 (2015). doi: 10.1364/AO.54.005123 |
[18] | Abraham E, Younus A, Delagnes J C, Mounaix P. Non-invasive investigation of art paintings by terahertz imaging. Appl Phys A 100, 585-590 (2010). doi: 10.1007/s00339-010-5642-z |
[19] | Dong J L, Locquet A, Melis M, Citrin D S. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry. Sci Rep 7, 15098 (2017). doi: 10.1038/s41598-017-15069-2 |
[20] | Menlo. THz Imaging Tool with ImageLab Processing Software. https://www.menlosystems.com/products/thz-time-domain-solutions/tera-image-3/. |
[21] | Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging. Adv Opt Photon 10, 843-938 (2018). doi: 10.1364/AOP.10.000843 |
[22] | Lee A W M, Qin Q, Kumar S, Williams B S, Hu Q. Real-time terahertz imaging over a standoff distance (> 25meters). Appl Phys Lett 89, 141125 (2006). doi: 10.1063/1.2360210 |
[23] | Nemoto N, Kanda N, Imai R, Konishi K, Miyoshi M et al. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure. IEEE Trans Terahertz Sci Technol 6, 175-182 (2016). doi: 10.1109/TTHZ.2015.2508010 |
[24] | Yang J, Ruan S C, Zhang M. Real-time, continuous-wave terahertz imaging by a pyroelectric camera. Chin Opt Lett 6, 29-31 (2008). doi: 10.3788/COL20080601.0029 |
[25] | Al Hadi R, Sherry H, Grzyb J, Zhao Y, Förster W et al. A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS. IEEE J Solid-State Circuits 47, 2999-3012 (2012). doi: 10.1109/JSSC.2012.2217851 |
[26] | Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G et al. THz imaging radar for standoff personnel screening. IEEE Trans Terahertz Sci Technol 1, 169-182 (2011). doi: 10.1109/TTHZ.2011.2159556 |
[27] | Katletz S, Pfleger M, Pühringer H, Vieweg N, Scherger B et al. Efficient terahertz en-face imaging. Opt Express 19, 23042 (2011). doi: 10.1364/OE.19.023042 |
[28] | Henry S C, Zurk L M, Schecklman S. Terahertz spectral imaging using correlation processing. IEEE Trans Terahertz Sci Technol 3, 486-493 (2013). doi: 10.1109/TTHZ.2013.2261065 |
[29] | Ushakov A, Chizhov P, Bukin V, Savel'ev A, Garnov S. Broadband in-line terahertz 2D imaging: comparative study with time-of-flight, cross-correlation, and Fourier transform data processing. J Opt Soc Am B 35, 1159-1164 (2018). doi: 10.1364/JOSAB.35.001159 |
[30] | Schumann S, Jansen C, Schwerdtfeger M, Busch S, Peters O et al. Spectrum to space transformed fast terahertz imaging. Opt Express 20, 19200-19205 (2012). doi: 10.1364/OE.20.019200 |
[31] | Guerboukha H, Nallappan K, Skorobogatiy M. Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica 5, 109-116 (2018). doi: 10.1364/OPTICA.5.000109 |
[32] | Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging. Nat Photon 13, 13-20 (2019). doi: 10.1038/s41566-018-0300-7 |
[33] | Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag 25, 21-30 (2008). doi: 10.1109/MSP.2007.914731 |
[34] | M. (Center for R. and S. R. Harwit, N. Y. Cornell University, Ithaca, N. J. A. (Bell L. Sloan, and N. J. Murray Hill, Hadamard Transform Optics (Academic Press, 1979). |
[35] | Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition. Nat Commun 6, 6225 (2015). doi: 10.1038/ncomms7225 |
[36] | Zhang Z B, Wang X Y, Zheng G A, Zhong J G. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt Express 25, 19619-19639 (2017). doi: 10.1364/OE.25.019619 |
[37] | Stern A. Optical Compressive Imaging (CRC Press/Taylor & Francis, 2016). |
[38] | Duarte M F, Davenport M A, Takbar D, Laska J N, Sun T et al. Single-pixel imaging via compressive sampling: Building simpler, smaller, and less-expensive digital cameras. IEEE Signal Process Mag 25, 83-91 (2008). doi: 10.1109/MSP.2007.914730 |
[39] | Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory 52, 5406-5425 (2006). doi: 10.1109/TIT.2006.885507 |
[40] | Donoho D L. Compressed sensing. IEEE Trans Inf Theory 52, 1289-1306 (2006). doi: 10.1109/TIT.2006.871582 |
[41] | Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52, 489-509 (2006). doi: 10.1109/TIT.2005.862083 |
[42] | Augustin S, Frohmann S, Jung P, Hübers H W. Mask responses for single-pixel terahertz imaging. Sci Rep 8, 4886 (2018). doi: 10.1038/s41598-018-23313-6 |
[43] | Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G et al. A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett 93, 121105 (2008). doi: 10.1063/1.2989126 |
[44] | Shen H, Gan L, Newman N, Dong Y, Li C et al. Spinning disk for compressive imaging. Opt Lett 37, 46-48 (2012). doi: 10.1364/OL.37.000046 |
[45] | Duan P, Wang Y Y, Xu D G, Yan C, Yang Z et al. Single pixel imaging with tunable terahertz parametric oscillator. Appl Opt 55, 3670-3675 (2016). doi: 10.1364/AO.55.003670 |
[46] | Kannegulla A, Shams M I B, Liu L, Cheng L J. Photo-induced spatial modulation of THz waves: opportunities and limitations. Opt Express 23, 32098-32112 (2015). doi: 10.1364/OE.23.032098 |
[47] | Chen Q, Jiang Z, Xu G X, Zhang X C. Near-field terahertz imaging with a dynamic aperture. Opt Lett 25, 1122-1124 (2000). doi: 10.1364/OL.25.001122 |
[48] | Busch S, Scherger B, Scheller M, Koch M. Optically controlled terahertz beam steering and imaging. Opt Lett 37, 1391-1393 (2012). doi: 10.1364/OL.37.001391 |
[49] | Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt Express 21, 12507-12518 (2013). doi: 10.1364/OE.21.012507 |
[50] | Kannegulla A, Jiang Z, Rahman S M, Shams M I B, Fay P et al. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams. IEEE Trans Terahertz Sci Technol 4, 321-327 (2014). doi: 10.1109/TTHZ.2014.2307163 |
[51] | Augustin S, Hieronymus J, Jung P, Hübers H W. Compressed sensing in a fully non-mechanical 350 GHz imaging setting. J Infrared, Millim Terahertz Waves 36, 496-512 (2015). |
[52] | Shang Y J, Wang X K, Sun W F, Han P, Ye J S et al. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction. Opt Express 27, 14725-14735 (2019). doi: 10.1364/OE.27.014725 |
[53] | She R B, Liu W Q, Lu Y F, Zhou Z S, Li G Y. Fourier single-pixel imaging in the terahertz regime. Appl Phys Lett 115, 021101 (2019). doi: 10.1063/1.5094728 |
[54] | Stantchev R I, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun 11, 2535 (2020). doi: 10.1038/s41467-020-16370-x |
[55] | Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photon 8, 605-609 (2014). doi: 10.1038/nphoton.2014.139 |
[56] | Kappa J, Sokoluk D, Klingel S, Shemelya C, Oesterschulze E et al. Electrically reconfigurable micromirror array for direct spatial light modulation of terahertz waves over a bandwidth wider than 1 THz. Sci Rep 9, 2597 (2019). doi: 10.1038/s41598-019-39152-y |
[57] | Zhao J P, Yiwen E, Williams K, Zhang X C, Boyd R W. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light Sci Appl 8, 55 (2019). doi: 10.1038/s41377-019-0166-6 |
[58] | Olivieri L, Totero Gongora J S, Pasquazi A, Peccianti M. Time-resolved nonlinear ghost imaging. ACS Photon 5, 3379-3388 (2018). doi: 10.1021/acsphotonics.8b00653 |
[59] | Olivieri L, Totero Gongora J S, Peters L, Cecconi V, Cutrona A et al. Hyperspectral terahertz microscopy via nonlinear ghost Imaging. Optica 7, 186-191 (2020). doi: 10.1364/OPTICA.381035 |
[60] | Saqueb S A N, Sertel K. Phase-sensitive single-pixel Thz imaging using intensity-only measurements. IEEE Trans Terahertz Sci Technol 6, 810-816 (2016). doi: 10.1109/TTHZ.2016.2610760 |
[61] | Shen Y C, Gan L, Stringer M, Burnett A, Tych K et al. Terahertz pulsed spectroscopic imaging using optimized binary masks. Appl Phys Lett 95, 231112 (2009). doi: 10.1063/1.3271030 |
[62] | Zanotto L, Piccoli R, Dong J, Caraffini D, Morandotti R, Razzari L. Time-domain terahertz compressive imaging. Opt Express 28, 3795-3802 (2020). doi: 10.1364/OE.384134 |
[63] | Stantchev R I, Sun B Q, Hornett S M, Hobson P A, Gibson G M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv 2, e1600190 (2016). doi: 10.1126/sciadv.1600190 |
[64] | Stantchev R I, Phillips D B, Hobson P, Hornett S M, Padgett M J et al. Compressed sensing with near-field THz radiation. Optica 4, 989-992 (2017). doi: 10.1364/OPTICA.4.000989 |
[65] | Hornett S M, Stantchev R I, Vardaki M Z, Beckerleg C, Hendry E. Subwavelength terahertz imaging of graphene photoconductivity. Nano Lett 16, 7019-7024 (2016). doi: 10.1021/acs.nanolett.6b03168 |
[66] | Stantchev R I, Mansfield J C, Edginton R S, Hobson P, Palombo F et al. Subwavelength hyperspectral THz studies of articular cartilage. Sci Rep 8, 6924 (2018). doi: 10.1038/s41598-018-25057-9 |
[67] | Chen S C, Du L H, Meng K, Li J, Zhai Z H et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100. Opt Lett 44, 21-24 (2019). doi: 10.1364/OL.44.000021 |
[68] | Mohr T, Herdt A, Elsässer W. 2D tomographic terahertz imaging using a single pixel detector. Opt Express 26, 3353-3367 (2018). doi: 10.1364/OE.26.003353 |
[69] | Saqueb S A N, Sertel K. Compressive Terahertz Imaging Using a Single-Bit Sensor. IEEE Trans Terahertz Sci Technol 8, 757-764 (2018). doi: 10.1109/TTHZ.2018.2873967 |
[70] | Saqueb S A N, Sertel K. Multisensor compressive sensing for high frame-rate imaging system in the THz Band. IEEE Trans Terahertz Sci Technol 9, 520-523 (2019). doi: 10.1109/TTHZ.2019.2926618 |
[71] | Chen S C, Feng Z, Li J, Tan W, Du L H et al. Ghost spintronic THz-emitter-array microscope. Light Sci Appl 9, 99 (2020). doi: 10.1038/s41377-020-0338-4 |
[72] | Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat Photon 10, 483-488 (2016). doi: 10.1038/nphoton.2016.91 |
[73] | Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev Sci Instrum 86, 051301 (2015). doi: 10.1063/1.4921389 |
(a) 16 × 16 identity matrix H and (b) the corresponding series of 16 (n2), 4 × 4 spatial masks {Hi(x, y)}i=1…16 obtained from it; (c) 16 × 16 Hadamard matrix H and (d) corresponding set of 16, 4 × 4 spatial masks {Hi(x, y)}i=1…16.
(a) Single-pixel imaging system based on metallic binary masks for THz modulation43. (b) Spinning-disk based THz imaging setup. Figure reproduced from: (a) ref.43, AIP Publishing; (b) ref.44, Optical Society of America.
All-optical modulation of a THz beam.
Metamaterial-based SLM55.
(a) Experimental setup exploiting the patterning of the probe beam for THz imaging57. The spatial shape of the pattern is encoded via an SLM on an optical beam, which is used to probe the collimated THz beam in the detection crystal. (b) Experimental implementation of TNGI58. In this case, the pump beam generating THz radiation is spatially modulated, allowing to obtain a THz beam already shaped into the required masks. Figure reproduced from: (a) ref.57, Creative Common 4.0 International License; (b) ref.58, American Chemical Society.
(a) THz spectra of polyethylene (upper trace) and lactose (lower) and photo of the sample (polyethylene at the upper-left side, lactose at the bottom-right and copper in the rest of the surface61.(b) Spectral images of the sample shown in the inset of (a): the images (left to right) are reconstructed considering the absorption at 0.50 THz, 0.54 THz, 1.38 THz, respectively, while the last is an RGB map of the regions with different absorption features (lactose in red, polyethylene in green, copper in blue). The maps were obtained by Fourier-transforming the THz waveforms measured for each spatial pattern and then reconstructing the spectral amplitude in each pixel for the 3 frequencies of interest. (c) Time-domain reconstruction of THz waveforms62: On the left side, the waveforms recorded for some of patterns; on the right side, those reconstructed in some selected pixels. (d) HDPE sample used in Ref.62. (e) 3D image of the sample in (d), retrieved using the relative time delays of the THz pulses at each pixel, showing three different thicknesses. Figure reproduced from: (a, b) ref.61, AIP Publishing; (c–e) ref.62, Optical Society of America.
(a1–f1) THz near-field imaging of a metallic cartwheel64. The images present the comparison between the experimental results and numerical modeling, for silicon modulators with decreasing thickness (400 µm (a1), (d1), 110 µm (b1), (e1), 6 µm (c1), (f1)). As can be clearly seen, only the 6 µm -thick silicon wafer allows to resolve the central region with smaller features. (a2–j2) Hyperspectral image of a leaf 59: (a2) Optical image of the leaf; (b2) microscope image; (c2) temporal waveform of the THz field transmitted through the leaf; (d2) fixed-time reconstruction (128 × 128 -pixels); (e2) local temporal response of the fresh leaf in the points indicated in (b2); (f2) hyperspectral image of a fresh leaf at 1.5 THz (16 × 16 -pixels); (g2) phase image of the fresh leaf, obtained without phase unwrapping of the experimental data; (h2–j2) same as the previous panel for a dried leaf (32 × 32 -pixels image). All the images correspond to a field of view of 4 mm×4 mm. Figure reproduced from: (a1–f1) ref.64, The Optical Society; (a2–j2) ref.59, Optical Society of America.
(a–d) Tomographic reconstruction of a rectangular object68: two measured projections under a rotation angle of (a) 180° and (b) 120° (c) Ray tracing simulation for a rectangular object with edge lengths of 14 mm× 7 mm and a refractive index of 1.5 under a rotation of 120°. Red colored rays indicate rays which get totally reflected on the rear side, while green rays can pass through the object. (d) Measured sinogram of a cuboid polypropylene sample with edge lengths of 14 mm× 7 mm. (e) Schematic of the GHOSTEAM system71: the spintronic THz emitter array (STEA) is excited by two-DMDs-encoded fs-laser pulses and generates spatially coded THz pulses. An object is placed in the near-field region (z < < λ). The transmitted THz pulse is collected and sent to a single-pixel detector. Figure reproduced from: (a–d) ref.68, Optical Society of America; (e) ref.71, Creative Common 4.0 International License.