Citation: | Kim MK, Lee DS, Yang YH, Rho JS. Switchable diurnal radiative cooling by doped VO2. Opto-Electron Adv 4, 200006 (2021).. doi: 10.29026/oea.2021.200006 |
[1] | Granqvist CG, Hjortsberg A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J Appl Phys 52, 4205–4220 (1981). doi: 10.1063/1.329270 |
[2] | Gentle AR, Smith GB. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett 10, 373–379 (2010). doi: 10.1021/nl903271d |
[3] | Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V et al. The radiative cooling of selective surfaces. Sol Energy 17, 83–89 (1975). doi: 10.1016/0038-092X(75)90062-6 |
[4] | Raman AP, Anoma MA, Zhu LX, Rephaeli E, Fan SH. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). doi: 10.1038/nature13883 |
[5] | Huang X, Li N, Wang JF, Liu DF, Xu ZJ et al. Single nanoporous MgHPO4·1.2H2O for daytime radiative cooling. ACS Appl Mater Interfaces 12, 2252–2258 (2020). doi: 10.1021/acsami.9b14615 |
[6] | Ko B, Lee D, Badloe T, Rho J. Metamaterial-based radiative cooling: towards energy-free all-day cooling. Energies 12, 1–14 (2018). doi: 10.3390/en12010001 |
[7] | Li T, Zhai Y, He SM, Gan WT, Wei ZY et al. A radiative cooling structural material. Science 364, 760–763 (2019). doi: 10.1126/science.aau9101 |
[8] | Hsu PC, Song AY, Catrysse PB, Liu C, Peng YC et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). doi: 10.1126/science.aaf5471 |
[9] | Li W, Fan SH. Nanophotonic control of thermal radiation for energy applications[Invited]. Opt Express 26, 15995–16021 (2018). doi: 10.1364/OE.26.015995 |
[10] | Kou JL, Jurado Z, Chen Z, Fan SH, Minnich AJ. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017). doi: 10.1021/acsphotonics.6b00991 |
[11] | Peng YC, Chen J, Song AY, Catrysse PB, Hsu PC et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1, 105–112 (2018). doi: 10.1038/s41893-018-0023-2 |
[12] | Mandal J, Fu YK, Overvig AC, Jia MX, Sun KR et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018). doi: 10.1126/science.aat9513 |
[13] | Cai LL, Song AY, Wu PL, Hsu PC, Peng YC et al. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 8, 496 (2017). doi: 10.1038/s41467-017-00614-4 |
[14] | Yang AK, Cai LL, Zhang RF, Wang JY, Hsu PC et al. Thermal management in nanofiber-based face mask. Nano Lett 17, 3506–3510 (2017). doi: 10.1021/acs.nanolett.7b00579 |
[15] | Lee D, Go M, Son S, Kim M, Badloe T et al. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). doi: 10.1016/j.nanoen.2020.105426 |
[16] | Heo SY, Lee GJ, Kim DH, Kim YJ, Ishii S et al. A Janus emitter for passive heat release from enclosures. Sci Adv 6, 36, eabb1906 (2020). |
[17] | Lee GJ, Kim DH, Heo SY, Song YM. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics. ACS Appl Mater Interfaces 12, 47, 53206–53214 (2020). |
[18] | Kim M, Lee D, Son S, Yang Y, Lee H et al. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater , 2002226 (2021). doi: 10.1002/adom.202002226 |
[19] | Chae D, Kim M, Jung PH, Son S, Seo J et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces 12, 7, 8073–8081 (2020). |
[20] | Atiganyanun S, Plumley JB, Han SJ, Hsu K, Cytrynbaum J et al. Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 5, 1181–1187 (2018). doi: 10.1021/acsphotonics.7b01492 |
[21] | Bao H, Yan C, Wang BX, Fang X, Zhao CY et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol Energ Mater Sol C 168, 78–84 (2017). doi: 10.1016/j.solmat.2017.04.020 |
[22] | Huang ZF, Ruan XL. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int J Heat Mass Transf 104, 890–896 (2017). doi: 10.1016/j.ijheatmasstransfer.2016.08.009 |
[23] | Zhai Y, Ma YG, David SN, Zhao DL, Lou RN et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). doi: 10.1126/science.aai7899 |
[24] | Nishikawa K, Yatsugi K, Kishida Y, Ito K. Temperature-selective emitter. Appl Phys Lett 114, 211104 (2019). doi: 10.1063/1.5091048 |
[25] | Chen MK, Morsy AM, Povinelli ML. Design of VO2-coated silicon microspheres for thermally-regulating paint. Opt Express 27, 21787–21793 (2019). doi: 10.1364/OE.27.021787 |
[26] | Long LS, Taylor S, Ying XY, Wang LP. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater Today Energy 13, 214–220 (2019). doi: 10.1016/j.mtener.2019.05.017 |
[27] | Jia ZY, Shu FZ, Gao YJ, Cheng F, Peng RW et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl 9, 034009 (2018). doi: 10.1103/PhysRevApplied.9.034009 |
[28] | Markov P, Marvel RE, Conley HJ, Miller KJ, Haglund Jr RF et al. Optically monitored electrical switching in VO2. ACS Photonics 2, 1175–1182 (2015). doi: 10.1021/acsphotonics.5b00244 |
[29] | Shu FZ, Zhang LH, Wang JN, Peng RW, Fan RH et al. Dynamically tunable bowtie nanoantennas based on the phase transition of vanadium dioxide. Opt Lett 44, 2752–2755 (2019). doi: 10.1364/OL.44.002752 |
[30] | Dietrich MK, Kuhl F, Polity A, Klar PJ. Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications. Appl Phys Lett 110, 141907 (2017). doi: 10.1063/1.4979700 |
[31] | Burkhardt W, Christmann T, Franke S, Kriegseis W, Meister D et al. Tungsten and fluorine co-doping of VO2 films. Thin Solid Films 402, 226–231 (2002). doi: 10.1016/S0040-6090(01)01603-0 |
[32] | Jorgenson GV, Lee JC. Doped vanadium oxide for optical switching films. Sol Energy Mater 14, 205–214 (1986). doi: 10.1016/0165-1633(86)90047-X |
[33] | Wang XJ, Liu YY, Li DH, Feng BH, He ZW et al. Structural and optical properties of tungsten-doped vanadium dioxide films. Chin Phys B 22, 066803 (2013). doi: 10.1088/1674-1056/22/6/066803 |
[34] | Zhang YF, Zhang JC, Zhang XZ, Huang C, Zhong YL et al. The additives W, Mo, Sn and Fe for promoting the formation of VO2(M) and its optical switching properties. Mater Lett 92, 61–64 (2013). doi: 10.1016/j.matlet.2012.10.054 |
[35] | Liu SJ, Fang HW, Su YT, Hsieh JH. Metal–insulator transition characteristics of Mo- and Mn-doped VO2 films fabricated by magnetron cosputtering technique. Jpn J Appl Phys 53, 063201 (2014). doi: 10.7567/JJAP.53.063201 |
[36] | Khan GR, Asokan K, Ahmad B. Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155–162 (2017). doi: 10.1016/j.tsf.2017.02.006 |
[37] | Rajeswaran B, Umarji AM. Effect of W addition on the electrical switching of VO2 thin films. AIP Adv 6, 035215 (2016). doi: 10.1063/1.4944855 |
[38] | Muraoka Y, Hiroi Z. Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl Phys Lett 80, 583–585 (2002). doi: 10.1063/1.1446215 |
[39] | Fan LL, Chen S, Luo ZL, Liu QH, Wu YF et al. Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation. Nano Lett 14, 4036–4043 (2014). doi: 10.1021/nl501480f |
[40] | Ono M, Chen KF, Li W, Fan SH. Self-adaptive radiative cooling based on phase change materials. Opt Express 26, A777–A787 (2018). doi: 10.1364/OE.26.00A777 |
[41] | Kort-Kamp WJM, Kramadhati S, Azad AK, Reiten MT, Dalvit DAR. Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5, 4554–4560 (2018). doi: 10.1021/acsphotonics.8b01026 |
[42] | Hecht E. Optics (Pearson Higher Education, Harlow, 2017). |
[43] | Yeh P. Optical Waves in Layered Media 95 (Wiley Online Library, New York, 1988). |
[44] | Kirchhoff G. Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys 185, 275–301 (1860). doi: 10.1002/andp.18601850205 |
[45] | Berk A, Anderson GP, Acharya PK, Bernstein LS, Muratov L et al. MODTRAN5: 2006 update. Proc SPIE 6233, 62331F (2006). |
[46] | Brandrup J, Immergut EH. Polymer Handbook 2nd ed (John Wiley and Sons, London, 1975). |
[47] | Wypych G. PMMA polymethylmethacrylate. Handbook of Polymers 2nd ed 450–454 (Elsevier, Oxford, 2012). |
[48] | Haynes WM, Lide DR, Bruno TJ. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014). |
[49] | Dargys A, Kundrotas J. Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publ., Vilniys, 1994). |
[50] | Tipler PA, Mosca G. Physics for Scientists and Engineers 6th ed (WH Freeman, 2007). |
[51] | Grove AS. Physics and Technology of Semiconductor Devices (Wiley, New York, 1967). |
[52] | National Center for Biotechnology Information. PubChem Database. Vanadium dioxide, CID=82849. https://pubchem.ncbi.nlm.nih.gov/compound/Vanadium-dioxide. |
[53] | Chase Jr MW. NIST-JANAF Thermochemical Tables 4th ed (American Chemical Society and American Institute of Physics, New York, 1998). |
[54] | Korea Meteorological Administration (ASOS). https://data.kma.go.kr/resources/html/en/aowdp.html. |
[55] | Shi Y, Li W, Raman A, Fan SH. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691 (2018). doi: 10.1021/acsphotonics.7b01136 |
[56] | Chae D, Kim M, Jung PH, Son S, Seo J et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces 12, 8073–8081 (2020). doi: 10.1021/acsami.9b16742 |
[57] | Naghshine BB, Saboonchi A. Optimized thin film coatings for passive radiative cooling applications. Opt Commun 410, 416–423 (2018). doi: 10.1016/j.optcom.2017.10.047 |
Temperature-dependent material responses of VO2. (a) Schematic of temperature-dependent phase. (b) Permittivity at 2 μm when Tc = 298 K. Shaded area represents transition regime. (c) Real and (d) imaginary part of permittivity in transition regime.
Design of the switchable radiative cooler. Emitter part consists of stacked layers of silver, silicon and VO2. Solar reflector part consists of three photonic crystals that have 4 pairs of PMMA and silicon. PCi is designed to suppress absorption at λi where λ1 = 0.52 μm, λ2 = 0.76 μm and λ3 = 1.18 μm. Thickness of each layer is λi/4n.
Absorptivity and reflectivity of the switchable radiative cooler. (a, b) Absorptivity and reflectivity of the emitter part when VO2 is in (a) metallic and (b) insulating state. (c) Absorptivity and reflectivity of the solar reflector part. Three arrows represent the target wavelengths of three photonic crystals. (d, e) Absorptivity and reflectivity of the switchable radiative cooler when VO2 is in (d) metallic and (e) insulating state. Incident angle is zero. (f) Absorptivity of the switchable radiative cooler when VO2 is metallic.
Cooling flux of the radiative cooler under normal incidence of solar energy when Tamb = 303 K. (a, b) Cooling flux when permittivity of VO2 is assumed to be (a) static and (b) dynamic. Shaded area represents the transition regime.
Temperature variation in time. (a) Temperature and (b) cooling flux in time for initial temperature of 280 K to 320 K with 5 K step. Temperature indicate the initial temperature of the cooler. Tamb = 303 K. (c, d) A cycle of temperature of a day. (c) Tamb and solar irradiance of July 15, 2018 in Pohang, Korea. (d) Temperature of switchable radiative cooler (blue) and the static radiative cooler when radiative cooling is assumed to be turned on (orange) and off (yellow). Tamb is shown as a reference (black). Initial temperature of the cooler is set equal to the initial Tamb.