Xia TF, Cao WQ, Cui YJ, Yang Y, Qian GD. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting. Opto-Electron Adv 4, 200063 (2021). doi: 10.29026/oea.2021.200063
Citation: Xia TF, Cao WQ, Cui YJ, Yang Y, Qian GD. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting. Opto-Electron Adv 4, 200063 (2021) . doi: 10.29026/oea.2021.200063

Original Article Open Access

Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting

More Information
  • The development of high-level anti-counterfeiting techniques is of great significance in economics and security issues. However, intricate reading methods are required to obtain multi-level information stored in different colors, which greatly limits the application of anti-counterfeiting technology on solving real world problems. Herein, we realize multicolor information anti-counterfeiting under simply external stimulation by utilizing the functional groups and multiple emission centers of lanthanide metal organic framework (Ln-MOFs) to tune luminescence color. Water responsive multicolor luminescence represented by both the tunable color from red to blue within the visible region and high sensitive responsivity has been achieved, owing to the increased nonradiative decay pathways and enhanced Eu3+-to-ligand energy back transfer. Remarkably, information hidden in different colors needs to be read with a specific water content, which can be used as an encryption key to ensure the security of the information for high-level anti-counterfeiting.
  • 加载中
  • [1] Ren W, Lin GG, Clarke C, Zhou JJ, Jin DY. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv Mater 32, 1901430 (2020). doi: 10.1002/adma.201901430

    CrossRef Google Scholar

    [2] Staake T, Thiesse F, Fleisch E. The emergence of counterfeit trade: a literature review. Eur J Mark 43, 320–349 (2009). doi: 10.1108/03090560910935451

    CrossRef Google Scholar

    [3] Li RM, Zhang YT, Tan J, Wan JX, Guo J et al. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Interfaces 8, 9384–9394 (2016). doi: 10.1021/acsami.6b02359

    CrossRef Google Scholar

    [4] Prime EL, Solomon DH. Australia’s plastic banknotes: fighting counterfeit currency. Angew Chem Int Ed 49, 3726–3736 (2010). doi: 10.1002/anie.200904538

    CrossRef Google Scholar

    [5] Yao WJ, Tian QY, Wu W. Tunable emissions of upconversion fluorescence for security applications. Adv Opt Mater 7, 1801171 (2019). doi: 10.1002/adom.201801171

    CrossRef Google Scholar

    [6] Ji XF, Wu RT, Long LL, Ke XS, Guo CX et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater 30, 1705480 (2018). doi: 10.1002/adma.201705480

    CrossRef Google Scholar

    [7] Arppe R, Sørensen TJ. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat Rev Chem 1, 0031 (2017). doi: 10.1038/s41570-017-0031

    CrossRef Google Scholar

    [8] Zhang C, Yang L, Zhao J, Liu BH, Han MY et al. White‐light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power. Angew Chem Int Ed 54, 11531–11535 (2015). doi: 10.1002/anie.201504518

    CrossRef Google Scholar

    [9] Lu YQ, Zhao JB, Zhang R, Liu YJ, Liu DM et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8, 32–36 (2014). doi: 10.1038/nphoton.2013.322

    CrossRef Google Scholar

    [10] Chen GY, Damasco J, Qiu HL, Shao W, Ohulchanskyy TY et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett 15, 7400–7407 (2015). doi: 10.1021/acs.nanolett.5b02830

    CrossRef Google Scholar

    [11] Zhou JJ, Wen SH, Liao JY, Clarke C, Tawfik SA et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat Photonics 12, 154–158 (2018). doi: 10.1038/s41566-018-0108-5

    CrossRef Google Scholar

    [12] Zhang JC, Pan C, Zhu YF, Zhao LZ, He HW et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv Mater 30, 1804644 (2018). doi: 10.1002/adma.201804644

    CrossRef Google Scholar

    [13] Cai GR, Jiang HL. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed 56, 563–567 (2017). doi: 10.1002/anie.201610914

    CrossRef Google Scholar

    [14] Chen ZJ, Li PH, Anderson R, Wang XJ, Zhang X et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020). doi: 10.1126/science.aaz8881

    CrossRef Google Scholar

    [15] Islamoglu T, Chen ZJ, Wasson MC, Buru CT, Kirlikovali KO et al. Metal-organic frameworks against toxic chemicals. Chem Rev 120, 8130–8160 (2020). doi: 10.1021/acs.chemrev.9b00828

    CrossRef Google Scholar

    [16] Lee S, Kapustin EA, Yaghi OM. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016). doi: 10.1126/science.aaf9135

    CrossRef Google Scholar

    [17] Li J, Wang XX, Zhao GX, Chen CL, Chai ZF et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47, 2322–2356 (2018). doi: 10.1039/C7CS00543A

    CrossRef Google Scholar

    [18] Li P, Vermeulen NA, Malliakas CD, Gómez-Gualdrón DA, Howarth AJ et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624–627 (2017). doi: 10.1126/science.aam7851

    CrossRef Google Scholar

    [19] Wang B, Zhang X, Huang HL, Zhang ZJ, Yildirim T et al. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res 14, 507–511 (2021). doi: 10.1007/s12274-020-2713-0

    CrossRef Google Scholar

    [20] Yu BX, Ye G, Chen J, Ma SQ. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut 253, 39–48 (2019). doi: 10.1016/j.envpol.2019.06.114

    CrossRef Google Scholar

    [21] Zhang X, Lin RB, Wang J, Wang B, Liang B et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv Mater 32, 1907995 (2020). doi: 10.1002/adma.201907995

    CrossRef Google Scholar

    [22] Yuan HY, Tao JF, Li NX, Karmakar A, Tang CH et al. On‐chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew Chem Int Ed 58, 14089–14094 (2019). doi: 10.1002/anie.201906222

    CrossRef Google Scholar

    [23] Yao YN, Gao ZH, Lv YC, Lin XQ, Liu YY et al. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew Chem Int Ed 58, 13803–13807 (2019). doi: 10.1002/anie.201907433

    CrossRef Google Scholar

    [24] Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017). doi: 10.1126/science.aam8743

    CrossRef Google Scholar

    [25] Nguyen HL, Hanikel N, Lyle SJ, Zhu CH, Proserpio DM et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc 142, 2218–2221 (2020). doi: 10.1021/jacs.9b13094

    CrossRef Google Scholar

    [26] Ma D, Li P, Duan XY, Li JZ, Shao PP et al. A hydrolytically stable vanadium(IV) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control. Angew Chem Int Ed 59, 3905–3909 (2020). doi: 10.1002/anie.201914762

    CrossRef Google Scholar

    [27] Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal-organic frameworks. Chem Rev 114, 10575–10612 (2014). doi: 10.1021/cr5002589

    CrossRef Google Scholar

    [28] Hao JN, Li YS. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a light-operated dual-mode assay for oxidative DNA damage. Adv Funct Mater 29, 1903058 (2019). doi: 10.1002/adfm.201903058

    CrossRef Google Scholar

    [29] Zhao NS, Li LJ, Song XZ, Zhu M, Hao ZM et al. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing. Adv Funct Mater 25, 1463–1469 (2015). doi: 10.1002/adfm.201402061

    CrossRef Google Scholar

    [30] Li ZQ, Wang GN, Ye YX, Li B, Li HR et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew Chem Int Edit 58, 18025–18031 (2019). doi: 10.1002/anie.201910467

    CrossRef Google Scholar

    [31] Razavi SAA, Morsali A. Linker functionalized metal-organic frameworks. Coordin Chem Rev 388, 213023 (2019).

    Google Scholar

    [32] Guillerm V, Weseliński ŁJ, Belmabkhout Y, Cairns AJ, D'Elia V et al. Discovery and introduction of a (3, 18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat Chem 6, 673–680 (2014). doi: 10.1038/nchem.1982

    CrossRef Google Scholar

    [33] Xue DX, Belmabkhout Y, Shekhah O, Jiang H, Adil K et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc 137, 5034–5040 (2015). doi: 10.1021/ja5131403

    CrossRef Google Scholar

    [34] Yu Y, Ma JP, Dong YB. Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm 14, 7157–7160 (2012). doi: 10.1039/c2ce26210j

    CrossRef Google Scholar

    [35] Yu L, Zheng QT, Wang H, Liu CX, Huang XQ et al. Double-color lanthanide metal-organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals. Anal Chem 92, 1402–1408 (2020). doi: 10.1021/acs.analchem.9b04575

    CrossRef Google Scholar

    [36] Li L, Zhu YL, Zhou XH, Brites CDS, Ananias D et al. Visible‐light excited luminescent thermometer based on single lanthanide organic frameworks. Adv Funct Mater 26, 8677–8684 (2016). doi: 10.1002/adfm.201603179

    CrossRef Google Scholar

    [37] Heine J, Müller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem Soc Rev 42, 9232–9242 (2013). doi: 10.1039/c3cs60232j

    CrossRef Google Scholar

  • Supplementary information for Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint