Citation: |
|
[1] | Ren W, Lin GG, Clarke C, Zhou JJ, Jin DY. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv Mater 32, 1901430 (2020). doi: 10.1002/adma.201901430 |
[2] | Staake T, Thiesse F, Fleisch E. The emergence of counterfeit trade: a literature review. Eur J Mark 43, 320–349 (2009). doi: 10.1108/03090560910935451 |
[3] | Li RM, Zhang YT, Tan J, Wan JX, Guo J et al. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Interfaces 8, 9384–9394 (2016). doi: 10.1021/acsami.6b02359 |
[4] | Prime EL, Solomon DH. Australia’s plastic banknotes: fighting counterfeit currency. Angew Chem Int Ed 49, 3726–3736 (2010). doi: 10.1002/anie.200904538 |
[5] | Yao WJ, Tian QY, Wu W. Tunable emissions of upconversion fluorescence for security applications. Adv Opt Mater 7, 1801171 (2019). doi: 10.1002/adom.201801171 |
[6] | Ji XF, Wu RT, Long LL, Ke XS, Guo CX et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater 30, 1705480 (2018). doi: 10.1002/adma.201705480 |
[7] | Arppe R, Sørensen TJ. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat Rev Chem 1, 0031 (2017). doi: 10.1038/s41570-017-0031 |
[8] | Zhang C, Yang L, Zhao J, Liu BH, Han MY et al. White‐light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power. Angew Chem Int Ed 54, 11531–11535 (2015). doi: 10.1002/anie.201504518 |
[9] | Lu YQ, Zhao JB, Zhang R, Liu YJ, Liu DM et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8, 32–36 (2014). doi: 10.1038/nphoton.2013.322 |
[10] | Chen GY, Damasco J, Qiu HL, Shao W, Ohulchanskyy TY et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett 15, 7400–7407 (2015). doi: 10.1021/acs.nanolett.5b02830 |
[11] | Zhou JJ, Wen SH, Liao JY, Clarke C, Tawfik SA et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat Photonics 12, 154–158 (2018). doi: 10.1038/s41566-018-0108-5 |
[12] | Zhang JC, Pan C, Zhu YF, Zhao LZ, He HW et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv Mater 30, 1804644 (2018). doi: 10.1002/adma.201804644 |
[13] | Cai GR, Jiang HL. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed 56, 563–567 (2017). doi: 10.1002/anie.201610914 |
[14] | Chen ZJ, Li PH, Anderson R, Wang XJ, Zhang X et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020). doi: 10.1126/science.aaz8881 |
[15] | Islamoglu T, Chen ZJ, Wasson MC, Buru CT, Kirlikovali KO et al. Metal-organic frameworks against toxic chemicals. Chem Rev 120, 8130–8160 (2020). doi: 10.1021/acs.chemrev.9b00828 |
[16] | Lee S, Kapustin EA, Yaghi OM. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016). doi: 10.1126/science.aaf9135 |
[17] | Li J, Wang XX, Zhao GX, Chen CL, Chai ZF et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47, 2322–2356 (2018). doi: 10.1039/C7CS00543A |
[18] | Li P, Vermeulen NA, Malliakas CD, Gómez-Gualdrón DA, Howarth AJ et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624–627 (2017). doi: 10.1126/science.aam7851 |
[19] | Wang B, Zhang X, Huang HL, Zhang ZJ, Yildirim T et al. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res 14, 507–511 (2021). doi: 10.1007/s12274-020-2713-0 |
[20] | Yu BX, Ye G, Chen J, Ma SQ. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut 253, 39–48 (2019). doi: 10.1016/j.envpol.2019.06.114 |
[21] | Zhang X, Lin RB, Wang J, Wang B, Liang B et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv Mater 32, 1907995 (2020). doi: 10.1002/adma.201907995 |
[22] | Yuan HY, Tao JF, Li NX, Karmakar A, Tang CH et al. On‐chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew Chem Int Ed 58, 14089–14094 (2019). doi: 10.1002/anie.201906222 |
[23] | Yao YN, Gao ZH, Lv YC, Lin XQ, Liu YY et al. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew Chem Int Ed 58, 13803–13807 (2019). doi: 10.1002/anie.201907433 |
[24] | Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017). doi: 10.1126/science.aam8743 |
[25] | Nguyen HL, Hanikel N, Lyle SJ, Zhu CH, Proserpio DM et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc 142, 2218–2221 (2020). doi: 10.1021/jacs.9b13094 |
[26] | Ma D, Li P, Duan XY, Li JZ, Shao PP et al. A hydrolytically stable vanadium(IV) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control. Angew Chem Int Ed 59, 3905–3909 (2020). doi: 10.1002/anie.201914762 |
[27] | Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal-organic frameworks. Chem Rev 114, 10575–10612 (2014). doi: 10.1021/cr5002589 |
[28] | Hao JN, Li YS. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a light-operated dual-mode assay for oxidative DNA damage. Adv Funct Mater 29, 1903058 (2019). doi: 10.1002/adfm.201903058 |
[29] | Zhao NS, Li LJ, Song XZ, Zhu M, Hao ZM et al. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing. Adv Funct Mater 25, 1463–1469 (2015). doi: 10.1002/adfm.201402061 |
[30] | Li ZQ, Wang GN, Ye YX, Li B, Li HR et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew Chem Int Edit 58, 18025–18031 (2019). doi: 10.1002/anie.201910467 |
[31] | Razavi SAA, Morsali A. Linker functionalized metal-organic frameworks. Coordin Chem Rev 388, 213023 (2019). |
[32] | Guillerm V, Weseliński ŁJ, Belmabkhout Y, Cairns AJ, D'Elia V et al. Discovery and introduction of a (3, 18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat Chem 6, 673–680 (2014). doi: 10.1038/nchem.1982 |
[33] | Xue DX, Belmabkhout Y, Shekhah O, Jiang H, Adil K et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc 137, 5034–5040 (2015). doi: 10.1021/ja5131403 |
[34] | Yu Y, Ma JP, Dong YB. Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm 14, 7157–7160 (2012). doi: 10.1039/c2ce26210j |
[35] | Yu L, Zheng QT, Wang H, Liu CX, Huang XQ et al. Double-color lanthanide metal-organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals. Anal Chem 92, 1402–1408 (2020). doi: 10.1021/acs.analchem.9b04575 |
[36] | Li L, Zhu YL, Zhou XH, Brites CDS, Ananias D et al. Visible‐light excited luminescent thermometer based on single lanthanide organic frameworks. Adv Funct Mater 26, 8677–8684 (2016). doi: 10.1002/adfm.201603179 |
[37] | Heine J, Müller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem Soc Rev 42, 9232–9242 (2013). doi: 10.1039/c3cs60232j |
Supplementary information for Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting |
(a) Structure of 12-connected hexanuclear Eu cluster [Eu6(μ3-OH)8(CO2)12]. Eu, blue; C, black; O, red. (b) Crystal structure of Eu(BDC-NH2) viewed along the a axis. Eu, blue polyhedra; C, gray; O, red; N, blue; H atoms, Me2NH2 cations and free DMF molecules are omitted for clarity. (c) Powder X-ray diffraction patterns of Eu(BDC-NH2), Tb(BDC-NH2) and Gd(BDC-NH2).
(a) The concentration of dissolved ligand H2BDC-NH2 in Eu(BDC-NH2) suspension at different time. (b) N2 sorption isotherms of Eu(BDC-NH2) before (red) and after (blue) being treated with water at 77 K. Solid symbols: adsorption, open symbols: desorption.
Emission spectra of Eu(BDC-NH2) in the solid state (a) suspended in THF (b) and in water (c) excited at 375 nm.
(a) Emission spectra of Eu(BDC-NH2) suspended in THF with different water content excited at 375 nm. (b) Intensities of ligand luminescence and 5D0 → 7F2 transition of Eu(BDC-NH2) in the presence of various content of water. (c) The relationship of luminescence intensity ratio (I430/I614) and water content. (d) Luminescence intensity ratio (I430/I614) measured in THF/H2O mixture with given water content (0.5, 1 and 2 vol%) using different amounts of Eu(BDC-NH2) (0.5, 1.0 and 1.5 mg).
(a) CIE chromaticity coordinates of the luminescence color of Eu(BDC-NH2) in THF with different water content (c = 0, 0.01, 0.04, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 3, and 5 vol%, respectively). Photographs of Eu(BDC-NH2) in (b) THF and (c) EtOH with different water content excited at 365 nm.
(a) Schematic representation of energy transfer process in Eu(BDC-NH2). (b) Phosphorescence spectra of Gd(BDC-NH2) at 77 K excited at 375 nm in frozen THF and water.