Citation: |
|
[1] | You DT, Xu CX, Qin FF, Zhu Z, Manohari AG et al. Interface control for pure ultraviolet electroluminescence from Nano-ZnO-based heterojunction devices. Sci Bull 63, 38–45 (2018). doi: 10.1016/j.scib.2017.12.006 |
[2] | Wu JZ, Long H, Shi XL, Luo S, Chen ZH et al. Polariton lasing in InGaN quantum wells at room temperature. Opto-Electron Adv 2, 190014 (2019). doi: 10.29026/oea.2019.190014 |
[3] | Kalapala ARK, Liu D, Cho SJ, Park JP, Zhao DY et al. Optically pumpedS room temperature low threshold deep UV lasers grown on native AlN substrates. Opto-Electron Adv 3, 190025 (2020). doi: 10.29026/oea.2020.190025 |
[4] | Zhang LC, Zhao FZ, Wang FF, Li QS. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes. Chin Phys B 22, 128502 (2013). doi: 10.1088/1674-1056/22/12/128502 |
[5] | Zhang LC, Li QS, Shang L, Wang FF, Qu C et al. Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer. Opt Express 21, 16578–16583 (2013). doi: 10.1364/OE.21.016578 |
[6] | Zhang LC, Li QS, Shang L, Zhang ZJ, Huang RZ et al. Electroluminescence from n-ZnO: Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers. J Phys D: Appl Phys 45, 485103 (2012). doi: 10.1088/0022-3727/45/48/485103 |
[7] | Zhu GY, Li JT, Shi ZL, Lin Y, Chen GF et al. Ultraviolet electroluminescence from n-ZnO/i-MgO/p+-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering. Appl Phys B 109, 195–199 (2012). doi: 10.1007/s00340-012-5161-z |
[8] | You JB, Zhang XW, Zhang SG, Wang JX, Yin ZG et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes. Appl Phys Lett 96, 201102 (2010). doi: 10.1063/1.3430039 |
[9] | Zhang SG, Zhang XW, Yin ZG, Wang JX, Dong JG et al. Improvement of electroluminescent performance of n-ZnO/AlN/p-GaN light-emitting diodes by optimizing the AlN barrier layer. J Appl Phys 109, 093708 (2011). doi: 10.1063/1.3590399 |
[10] | Huang HH, Fang GJ, Mo XM, Long H, Yuan LY et al. ZnO-based fairly pure ultraviolet light-emitting diodes with a low operation voltage. IEEE Electron Device Lett 30, 1063–1065 (2009). doi: 10.1109/LED.2009.2028904 |
[11] | Jeong S, Kim H. High light output efficiency of n-ZnO/p-GaN heterojunction light-emitting diodes fabricated with a MgF2 electron-blocking layer. Appl Phys Express 9, 015501 (2016). doi: 10.7567/APEX.9.015501 |
[12] | Yang L, Liu WZ, Xu HY, Ma JG, Zhang C et al. Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires. J Mater Chem C 5, 3288–3295 (2017). doi: 10.1039/C7TC00419B |
[13] | Wang H, Zhao Y, Wu C, Dong X, Zhang BL et al. Ultraviolet electroluminescence from n-ZnO/NiO/p-GaN light-emitting diode fabricated by MOCVD. J Lumin 158, 6–10 (2015). doi: 10.1016/j.jlumin.2014.09.007 |
[14] | Wang X, Gan XW, Zhang GZ, Su X, Zheng MJ et al. The function of an In0.17Al0.83N interlayer in n-ZnO/In0.17Al0.83N/p-GaN heterojunctions. Appl Surf Sci 393, 221–224 (2017). doi: 10.1016/j.apsusc.2016.09.165 |
[15] | Mo XM, Long H, Wang HN, Li SZ, Chen Z et al. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer. Appl Phys Lett 105, 063505 (2014). doi: 10.1063/1.4893280 |
[16] | Huang HH, Fang GJ, Li Y, Li SZ, Mo XM et al. Improved and color tunable electroluminescence from n-ZnO/HfO2/p-GaN heterojunction light emitting diodes. Appl Phys Lett 100, 233502 (2012). doi: 10.1063/1.4724212 |
[17] | Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZL. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21, 2767–2770 (2009). doi: 10.1002/adma.200802686 |
[18] | Zhu GY, Xu CX, Cai LS, Li JT, Shi ZL et al. Lasing behavior modulation for ZnO whispering-gallery microcavities. ACS Appl Mater Interfaces 4, 6195–6201 (2012). doi: 10.1021/am301800k |
[19] | Lu JF, Jiang MM, Wei M, Xu CX, Wang SF et al. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 4, 2419–2424 (2017). doi: 10.1021/acsphotonics.7b00476 |
[20] | Lu JF, Shi ZL, Wang YY, Lin Y, Zhu QX et al. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices. Sci Rep 6, 25645 (2016). doi: 10.1038/srep25645 |
[21] | Oulton RF. Surface Plasmon lasers: sources of nanoscopic light. Mater Today 15, 26–34 (2012). doi: 10.1016/S1369-7021(12)70018-4 |
[22] | Liu W, Li ZX, Shi ZL, Chen F, Zhu YZ et al. Symmetrical bi-heterojunction alternating current ultraviolet light-emitting diode. IEEE Electron Device Lett 41, 252–255 (2020). doi: 10.1109/LED.2019.2960816 |
The diagram of device fabrication.
(a) A schematic diagram for ZnO/GaN LEDs. (b) The Gaussian decomposition of EL spectra for LED and the inset depicts the PL spectra of the GaN film as well as ZnO MWs. (c−f) The height of the step-like HfO2 film with different sputtering time (c) 2 min, (d) 3 min, (e) 5 min and (f) 7 min. (g, h) AFM image for the GaN surface (g) before and (h) after bonding HfO2 film with thickness of 5.03 nm.
(a) Schematic diagram of ZnO/HfO2/GaN for in-situ optical test. (b) Lasing emission intensity for ZnO MW versus the excitation power density on different substrates. (c−f) the corresponding PL spectra under different excitation power densities for ZnO MW with different thickness of HfO2 films: (c) 0 nm, (d) 5.03 nm, (e) 8.79 nm and (f) 12.55 nm.
The lifetime of ZnO MW on various substrates with excitation power of 8 μW.
(a) I-V characteristics of ITO/ZnO/HfO2/GaN LEDs. The inset is a schematic diagram for ITO/ZnO/HfO2/GaN LEDs. (b) Normalized EL spectra for LEDs under an excitation current of 1 mA. (c−f) EL intensity of ZnO/HfO2/GaN LEDs with HfO2 films of different thickness and the inset is the light pictures: (c) 0 nm, (d) 5.03 nm, (e) 8.79 nm, (f) 12.55 nm. (g) Chromaticity coordinates of the spectra in (b). (h) EL peak intensities of the LEDs from (c) to (f).
Gaussian conversion of Fig. 5(c)−5(f) at a current of 1 mA: (a) 0 nm, (b) 5.03 nm, (c) 8.79 nm, (d) 12.55 nm, and the inset images depict the contents of UV and visible lights. (e) The peak positions of emissions and (f) FWHM of emissions for these LEDs.
(a) Energy band of ZnO/HfO2/GaN LEDs based on theoretical simulation. (b) The distribution of electronical current density in ZnO/HfO2/GaN LEDs. The inset picture displays a structure diagram of simulation.
Schematic band structures of (a) ZnO/GaN, (b) ZnO /thin HfO2/ GaN and (c) ZnO /thick HfO2/ GaN.