Liu W, Li ZX, Shi ZL, Wang R, Zhu YZ et al. Nano-buffer controlled electron tunneling to regulate heterojunctional interface emission. Opto-Electron Adv 4, 200064 (2021). doi: 10.29026/oea.2021.200064
Citation: Liu W, Li ZX, Shi ZL, Wang R, Zhu YZ et al. Nano-buffer controlled electron tunneling to regulate heterojunctional interface emission. Opto-Electron Adv 4, 200064 (2021) . doi: 10.29026/oea.2021.200064

Original Article Open Access

Nano-buffer controlled electron tunneling to regulate heterojunctional interface emission

More Information
  • Interface emission from heterojunction is a shortcoming for electroluminescent devices. A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge. However, the dynamics for carrier tunneling to control the interface emission is still a mystery. Herein, the low-refractive HfO2 with a proper energy band configuration is employed as the buffer layer in achieving ZnO-microwire/HfO2/GaN heterojunctional light-emitting diodes (LEDs). The optically pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO2 layer. As a result, the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet (UV) emission is enhanced. To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN, the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO2 film causing blue shift and interface emission enhancement. Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.
  • 加载中
  • [1] You DT, Xu CX, Qin FF, Zhu Z, Manohari AG et al. Interface control for pure ultraviolet electroluminescence from Nano-ZnO-based heterojunction devices. Sci Bull 63, 38–45 (2018). doi: 10.1016/j.scib.2017.12.006

    CrossRef Google Scholar

    [2] Wu JZ, Long H, Shi XL, Luo S, Chen ZH et al. Polariton lasing in InGaN quantum wells at room temperature. Opto-Electron Adv 2, 190014 (2019). doi: 10.29026/oea.2019.190014

    CrossRef Google Scholar

    [3] Kalapala ARK, Liu D, Cho SJ, Park JP, Zhao DY et al. Optically pumpedS room temperature low threshold deep UV lasers grown on native AlN substrates. Opto-Electron Adv 3, 190025 (2020). doi: 10.29026/oea.2020.190025

    CrossRef Google Scholar

    [4] Zhang LC, Zhao FZ, Wang FF, Li QS. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes. Chin Phys B 22, 128502 (2013). doi: 10.1088/1674-1056/22/12/128502

    CrossRef Google Scholar

    [5] Zhang LC, Li QS, Shang L, Wang FF, Qu C et al. Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer. Opt Express 21, 16578–16583 (2013). doi: 10.1364/OE.21.016578

    CrossRef Google Scholar

    [6] Zhang LC, Li QS, Shang L, Zhang ZJ, Huang RZ et al. Electroluminescence from n-ZnO: Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers. J Phys D: Appl Phys 45, 485103 (2012). doi: 10.1088/0022-3727/45/48/485103

    CrossRef Google Scholar

    [7] Zhu GY, Li JT, Shi ZL, Lin Y, Chen GF et al. Ultraviolet electroluminescence from n-ZnO/i-MgO/p+-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering. Appl Phys B 109, 195–199 (2012). doi: 10.1007/s00340-012-5161-z

    CrossRef Google Scholar

    [8] You JB, Zhang XW, Zhang SG, Wang JX, Yin ZG et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes. Appl Phys Lett 96, 201102 (2010). doi: 10.1063/1.3430039

    CrossRef Google Scholar

    [9] Zhang SG, Zhang XW, Yin ZG, Wang JX, Dong JG et al. Improvement of electroluminescent performance of n-ZnO/AlN/p-GaN light-emitting diodes by optimizing the AlN barrier layer. J Appl Phys 109, 093708 (2011). doi: 10.1063/1.3590399

    CrossRef Google Scholar

    [10] Huang HH, Fang GJ, Mo XM, Long H, Yuan LY et al. ZnO-based fairly pure ultraviolet light-emitting diodes with a low operation voltage. IEEE Electron Device Lett 30, 1063–1065 (2009). doi: 10.1109/LED.2009.2028904

    CrossRef Google Scholar

    [11] Jeong S, Kim H. High light output efficiency of n-ZnO/p-GaN heterojunction light-emitting diodes fabricated with a MgF2 electron-blocking layer. Appl Phys Express 9, 015501 (2016). doi: 10.7567/APEX.9.015501

    CrossRef Google Scholar

    [12] Yang L, Liu WZ, Xu HY, Ma JG, Zhang C et al. Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires. J Mater Chem C 5, 3288–3295 (2017). doi: 10.1039/C7TC00419B

    CrossRef Google Scholar

    [13] Wang H, Zhao Y, Wu C, Dong X, Zhang BL et al. Ultraviolet electroluminescence from n-ZnO/NiO/p-GaN light-emitting diode fabricated by MOCVD. J Lumin 158, 6–10 (2015). doi: 10.1016/j.jlumin.2014.09.007

    CrossRef Google Scholar

    [14] Wang X, Gan XW, Zhang GZ, Su X, Zheng MJ et al. The function of an In0.17Al0.83N interlayer in n-ZnO/In0.17Al0.83N/p-GaN heterojunctions. Appl Surf Sci 393, 221–224 (2017). doi: 10.1016/j.apsusc.2016.09.165

    CrossRef Google Scholar

    [15] Mo XM, Long H, Wang HN, Li SZ, Chen Z et al. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer. Appl Phys Lett 105, 063505 (2014). doi: 10.1063/1.4893280

    CrossRef Google Scholar

    [16] Huang HH, Fang GJ, Li Y, Li SZ, Mo XM et al. Improved and color tunable electroluminescence from n-ZnO/HfO2/p-GaN heterojunction light emitting diodes. Appl Phys Lett 100, 233502 (2012). doi: 10.1063/1.4724212

    CrossRef Google Scholar

    [17] Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZL. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21, 2767–2770 (2009). doi: 10.1002/adma.200802686

    CrossRef Google Scholar

    [18] Zhu GY, Xu CX, Cai LS, Li JT, Shi ZL et al. Lasing behavior modulation for ZnO whispering-gallery microcavities. ACS Appl Mater Interfaces 4, 6195–6201 (2012). doi: 10.1021/am301800k

    CrossRef Google Scholar

    [19] Lu JF, Jiang MM, Wei M, Xu CX, Wang SF et al. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 4, 2419–2424 (2017). doi: 10.1021/acsphotonics.7b00476

    CrossRef Google Scholar

    [20] Lu JF, Shi ZL, Wang YY, Lin Y, Zhu QX et al. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices. Sci Rep 6, 25645 (2016). doi: 10.1038/srep25645

    CrossRef Google Scholar

    [21] Oulton RF. Surface Plasmon lasers: sources of nanoscopic light. Mater Today 15, 26–34 (2012). doi: 10.1016/S1369-7021(12)70018-4

    CrossRef Google Scholar

    [22] Liu W, Li ZX, Shi ZL, Chen F, Zhu YZ et al. Symmetrical bi-heterojunction alternating current ultraviolet light-emitting diode. IEEE Electron Device Lett 41, 252–255 (2020). doi: 10.1109/LED.2019.2960816

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint