Wan ZF, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv 4, 200079 (2021). doi: 10.29026/oea.2021.200079
Citation: Wan ZF, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv 4, 200079 (2021) . doi: 10.29026/oea.2021.200079

Review Open Access

Laser scribed graphene for supercapacitors

More Information
  • Supercapacitors, with the merits of both capacitors for safe and fast charge and batteries for high energy storage have drawn tremendous attention. Recently, laser scribed graphene has been increasingly studied for supercapacitor applications due to its unique properties, such as flexible fabrication, large surface area and high electrical conductivity. With the laser direct writing process, graphene can be directly fabricated and patterned as the supercapacitor electrodes. In this review, facile laser direct writing methods for graphene were firstly summarized. Various precursors, mainly graphene oxide and polyimide were employed for laser scribed graphene and the modifications of graphene properties were also discussed. This laser scribed graphene was applied for electrochemical double-layer capacitors, pseudo-capacitors and hybrid supercapacitors. Diverse strategies including doping, composite materials and pattern design were utilized to enhance the electrochemical performances of supercapacitors. Featured supercapacitors with excellent flexible, ultrafine-structured and integrated functions were also reviewed.
  • 加载中
  • [1] Zheng XR, Jia BH, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [2] Yun XW, Xiong ZY, Tu L, Bai LQ, Wang XG. Hierarchical porous graphene film: an ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon 125, 308–317 (2017). doi: 10.1016/j.carbon.2017.09.063

    CrossRef Google Scholar

    [3] Bellani S, Martín-García B, Oropesa-Nuñez R, Romano V, Najafi L et al. “Ion sliding” on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horiz 4, 1077–1091 (2019). doi: 10.1039/C8NH00446C

    CrossRef Google Scholar

    [4] Wu MM, Li YR, Yao BW, Chen J, Li C et al. A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. J Mater Chem A 4, 16213–16218 (2016). doi: 10.1039/C6TA06846D

    CrossRef Google Scholar

    [5] Chen CM, Zhang Q, Yang MG, Huang CH, Yang YG et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 50, 3572–3584 (2012). doi: 10.1016/j.carbon.2012.03.029

    CrossRef Google Scholar

    [6] Huang GW, Li N, Du Y, Feng QP, Xiao HM et al. Laser-printed in-plane micro-supercapacitors: from symmetric to asymmetric structure. ACS Appl Mater Interfaces 10, 723–732 (2018). doi: 10.1021/acsami.7b15922

    CrossRef Google Scholar

    [7] Zhao B, Liu P, Jiang Y, Pan DY, Tao HH et al. Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198, 423–427 (2012). doi: 10.1016/j.jpowsour.2011.09.074

    CrossRef Google Scholar

    [8] Chen YM, Guo MH, He L, Yang W, Xu L et al. Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. J Mater 5, 303–312 (2019).

    Google Scholar

    [9] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849

    CrossRef Google Scholar

    [10] Li GJ. Direct laser writing of graphene electrodes. J Appl Phys 127, 010901 (2020). doi: 10.1063/1.5120056

    CrossRef Google Scholar

    [11] Zhao Y, Han Q, Cheng ZH, Jiang L, Qu LT. Integrated graphene systems by laser irradiation for advanced devices. Nano Today 12, 14–30 (2017). doi: 10.1016/j.nantod.2016.12.010

    CrossRef Google Scholar

    [12] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [13] Bae S, Kim H, Lee Y, Xu XF, Park JS et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech 5, 574–578 (2010). doi: 10.1038/nnano.2010.132

    CrossRef Google Scholar

    [14] Wang SJ, Geng Y, Zheng QB, Kim JK. Fabrication of highly conducting and transparent graphene films. Carbon 48, 1815–1823 (2010). doi: 10.1016/j.carbon.2010.01.027

    CrossRef Google Scholar

    [15] Wan ZF, Streed EW, Lobino M, Wang SJ, Sang RT et al. Laser-reduced graphene: synthesis, properties, and applications. Adv Mater Technol 3, 1700315 (2018). doi: 10.1002/admt.201700315

    CrossRef Google Scholar

    [16] Bergsman DS, Getachew BA, Cooper CB, Grossman JC. Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat Commun 11, 3636 (2020). doi: 10.1038/s41467-020-17259-5

    CrossRef Google Scholar

    [17] Guo L, Jiang HB, Shao RQ, Zhang YL, Xie SY et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50, 1667–1673 (2012). doi: 10.1016/j.carbon.2011.12.011

    CrossRef Google Scholar

    [18] Li XP, Ren HR, Chen X, Liu J, Li Q et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6, 6984 (2015). doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [19] Loeian MS, Aghaei SM, Farhadi F, Rai V, Yang HW et al. Liquid biopsy using the nanotube-ctc-chip: capture of invasive ctcs with high purity using preferential adherence in breast cancer patients. Lab Chip 19, 1899–1915 (2019). doi: 10.1039/C9LC00274J

    CrossRef Google Scholar

    [20] Gao W, Singh N, Song L, Liu Z, Reddy ALM et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotech 6, 496–500 (2011). doi: 10.1038/nnano.2011.110

    CrossRef Google Scholar

    [21] Kavinkumar T, Kavitha P, Naresh N, Manivannan S, Muneeswaran M et al. High performance flexible solid-state symmetric supercapacitors based on laser induced porous reduced graphene oxide-graphene oxide hybrid nanostructure devices. Appl Surf Sci 480, 671–679 (2019). doi: 10.1016/j.apsusc.2019.02.231

    CrossRef Google Scholar

    [22] Luo SD, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016). doi: 10.1016/j.carbon.2015.09.076

    CrossRef Google Scholar

    [23] Carvalho AF, Fernandes AJS, Leitão C, Deuermeier J, Marques AC et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater 28, 1805271 (2018). doi: 10.1002/adfm.201805271

    CrossRef Google Scholar

    [24] Wan ZF, Umer M, Lobino M, Thiel D, Nguyen NT et al. Laser induced self-n-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 163, 385–394 (2020). doi: 10.1016/j.carbon.2020.03.043

    CrossRef Google Scholar

    [25] Wan ZF, Nguyen NT, Gao YS, Li Q. Laser induced graphene for biosensors. Sustain Mater Technol 25, e00205 (2020).

    Google Scholar

    [26] Li RZ, Yan J, Fang YM, Fan XY, Sheng LK et al. Laser-scribed lossy microstrip lines for radio frequency applications. Appl Sci 9, 415 (2019). doi: 10.3390/app9030415

    CrossRef Google Scholar

    [27] Kang SM, Lim K, Park H, Park JB, Park SC et al. Roll-to-roll laser-printed graphene-graphitic carbon electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 10, 1033–1038 (2018). doi: 10.1021/acsami.7b13741

    CrossRef Google Scholar

    [28] Zhang L, DeArmond D, Alvarez NT, Malik R, Oslin N et al. Flexible micro-supercapacitor based on graphene with 3D structure. Small 13, 1603114 (2017). doi: 10.1002/smll.201603114

    CrossRef Google Scholar

    [29] Ye JL, Tan HB, Wu SL, Ni K, Pan F et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adva Mater 30, e1801384 (2018). doi: 10.1002/adma.201801384

    CrossRef Google Scholar

    [30] Zhang YN, Shi L, Hu DJ, Chen SR, Xie SY et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz 4, 601–609 (2019). doi: 10.1039/C9NH00003H

    CrossRef Google Scholar

    [31] Lin H, Jia BH, Gu M. Dynamic generation of debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 36, 406–408 (2011). doi: 10.1364/OL.36.000406

    CrossRef Google Scholar

    [32] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [33] Zhang YL, Guo L, Wei S, He YY, Xia H et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15–20 (2010). doi: 10.1016/j.nantod.2009.12.009

    CrossRef Google Scholar

    [34] Peng ZW, Lin J, Ye RQ, Samuel ELG, Tour JM. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl Mater Interfaces 7, 3414–3419 (2015). doi: 10.1021/am509065d

    CrossRef Google Scholar

    [35] Wu H, Zhang WL, Kandambeth S, Shekhah O, Eddaoudi M et al. Conductive metal–organic frameworks selectively grown on laser‐scribed graphene for electrochemical microsupercapacitors. Adv Energy Mater 9, 1900482 (2019). doi: 10.1002/aenm.201900482

    CrossRef Google Scholar

    [36] Rahimi R, Ochoa M, Yu WY, Ziaie B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces 7, 4463–4470 (2015). doi: 10.1021/am509087u

    CrossRef Google Scholar

    [37] Singh RK, Kumar R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6, 64993–65011 (2016). doi: 10.1039/C6RA07626B

    CrossRef Google Scholar

    [38] Deng NQ, Tian H, Ju ZY, Zhao HM, Li C et al. Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates. Carbon 109, 173–181 (2016). doi: 10.1016/j.carbon.2016.08.005

    CrossRef Google Scholar

    [39] Smirnov VA, Arbuzov AA, Shul’ga YM, Baskakov SA, Martynenko VM et al. Photoreduction of graphite oxide. High Energy Chem 45, 57–61 (2011). doi: 10.1134/S0018143911010176

    CrossRef Google Scholar

    [40] Wang GC, Yang ZY, Li XW, Li CZ. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon 43, 2564–2570 (2005). doi: 10.1016/j.carbon.2005.05.008

    CrossRef Google Scholar

    [41] Wan ZF, Wang SJ, Haylock B, Kaur J, Tanner P et al. Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon 141, 83–91 (2019). doi: 10.1016/j.carbon.2018.09.030

    CrossRef Google Scholar

    [42] Wang DW, Min YG, Yu YH, Peng B. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors. Electrochim Acta 141, 271–278 (2014). doi: 10.1016/j.electacta.2014.07.036

    CrossRef Google Scholar

    [43] Huang L, Liu Y, Ji LC, Xie YQ, Wang T et al. Pulsed laser assisted reduction of graphene oxide. Carbon 49, 2431–2436 (2011). doi: 10.1016/j.carbon.2011.01.067

    CrossRef Google Scholar

    [44] Hu Y, Cheng HH, Zhao F, Chen N, Jiang L et al. All-in-one graphene fiber supercapacitor. Nanoscale 6, 6448–6451 (2014). doi: 10.1039/c4nr01220h

    CrossRef Google Scholar

    [45] Cheng HH, Ye MH, Zhao F, Hu CG, Zhao Y et al. A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization. Adv Mater 28, 3305–3312 (2016). doi: 10.1002/adma.201505431

    CrossRef Google Scholar

    [46] Shi HH, Jang S, Naguib HE. Freestanding laser-assisted reduced graphene oxide microribbon textile electrode fabricated on a liquid surface for supercapacitors and breath sensors. ACS Appl Mater Interfaces 11, 27183–27191 (2019). doi: 10.1021/acsami.9b05811

    CrossRef Google Scholar

    [47] Ibrahim KH, Irannejad M, Hajialamdari M, Ramadhan A, Musselman KP et al. A novel femtosecond laser-assisted method for the synthesis of reduced graphene oxide gels and thin films with tunable properties. Adv Mater Interfaces 3, 1500864 (2016). doi: 10.1002/admi.201500864

    CrossRef Google Scholar

    [48] Lin J, Peng ZW, Liu YY, Ruiz-Zepeda F, Ye RQ et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 5, 5714 (2014). doi: 10.1038/ncomms6714

    CrossRef Google Scholar

    [49] Zhang ZC, Song MM, Hao JX, Wu KB, Li CY et al. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). doi: 10.1016/j.carbon.2017.11.014

    CrossRef Google Scholar

    [50] Cao LJ, Zhu SR, Pan BB, Dai XY, Zhao WW et al. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 163, 85–94 (2020). doi: 10.1016/j.carbon.2020.03.015

    CrossRef Google Scholar

    [51] Lamberti A, Serrapede M, Ferraro G, Fontana M, Perrucci F et al. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater 4, 035012 (2017). doi: 10.1088/2053-1583/aa790e

    CrossRef Google Scholar

    [52] Ye RQ, Chyan Y, Zhang JB, Li YL, Han X et al. Laser-induced graphene formation on wood. Adv Mater 29, 1702211 (2017). doi: 10.1002/adma.201702211

    CrossRef Google Scholar

    [53] Chyan Y, Ye RQ, Li YL, Singh SP, Arnusch CJ et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018). doi: 10.1021/acsnano.7b08539

    CrossRef Google Scholar

    [54] Zhang WL, Lei YJ, Ming FW, Jiang Q, Costa PMFJ et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv Energy Mater 8, 1801840 (2018). doi: 10.1002/aenm.201801840

    CrossRef Google Scholar

    [55] Strauss V, Marsh K, Kowal MD, El-Kady M, Kaner RB. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 30, 1704449 (2018).

    Google Scholar

    [56] Zhang JH, Zhou T, Wen L, Zhang AM. Fabricating metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl Mater Interfaces 8, 33999–34007 (2016). doi: 10.1021/acsami.6b11305

    CrossRef Google Scholar

    [57] Cai JG, Lv C, Watanabe A. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices. ACS Appl Mater Interfaces 10, 915–924 (2018). doi: 10.1021/acsami.7b16558

    CrossRef Google Scholar

    [58] Liu HL, Tang Y, Xie YX, Lu LS, Wan ZP et al. Effect of pulsed ND:YAG laser processing parameters on surface properties of polyimide films. Surf Coat Technol 361, 102–111 (2019). doi: 10.1016/j.surfcoat.2019.01.025

    CrossRef Google Scholar

    [59] Yang DF, Bock C. Laser reduced graphene for supercapacitor applications. J Power Sources 337, 73–81 (2017). doi: 10.1016/j.jpowsour.2016.10.108

    CrossRef Google Scholar

    [60] Lamberti A, Perrucci F, Caprioli M, Serrapede M, Fontana M et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology 28, 174002 (2017). doi: 10.1088/1361-6528/aa6615

    CrossRef Google Scholar

    [61] Tiliakos A, Ceaus C, Iordache SM, Vasile E, Stamatin I. Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. J Anal Appl Pyrolysis 121, 275–286 (2016). doi: 10.1016/j.jaap.2016.08.007

    CrossRef Google Scholar

    [62] Tran TX, Choi H, Che CH, Sul JH, Kim IG et al. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications. ACS Appl Mater Interfaces 10, 39777–39784 (2018). doi: 10.1021/acsami.8b14678

    CrossRef Google Scholar

    [63] Fu XY, Zhang YL, Jiang HB, Han DD, Liu YQ et al. Hierarchically structuring and synchronous photoreduction of graphene oxide films by laser holography for supercapacitors. Opt Lett 44, 1714–1717 (2019). doi: 10.1364/OL.44.001714

    CrossRef Google Scholar

    [64] Guan YC, Fang YW, Lim GC, Zheng HY, Hong MH. Fabrication of laser-reduced graphene oxide in liquid nitrogen environment. Sci Rep 6, 28913 (2016). doi: 10.1038/srep28913

    CrossRef Google Scholar

    [65] Li YL, Luong DX, Zhang JB, Tarkunde YR, Kittrell C et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29, 1700496 (2017). doi: 10.1002/adma.201700496

    CrossRef Google Scholar

    [66] Huang Y, Liang JJ, Chen YS. An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012). doi: 10.1002/smll.201102635

    CrossRef Google Scholar

    [67] Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196, 1–12 (2011). doi: 10.1016/j.jpowsour.2010.06.084

    CrossRef Google Scholar

    [68] Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38, 2520–2531 (2009). doi: 10.1039/b813846j

    CrossRef Google Scholar

    [69] El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). doi: 10.1126/science.1216744

    CrossRef Google Scholar

    [70] El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4, 1475 (2013). doi: 10.1038/ncomms2446

    CrossRef Google Scholar

    [71] Li RZ, Peng R, Kihm KD, Bai S, Bridges D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci 9, 1458–1467 (2016). doi: 10.1039/C5EE03637B

    CrossRef Google Scholar

    [72] Peng ZW, Ye RQ, Mann JA, Zakhidov D, Li YL et al. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9, 5868–5875 (2015). doi: 10.1021/acsnano.5b00436

    CrossRef Google Scholar

    [73] Wen FS, Hao CX, Xiang JY, Wang LM, Hou H et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 75, 236–243 (2014). doi: 10.1016/j.carbon.2014.03.058

    CrossRef Google Scholar

    [74] Li XQ, Cai WH, Teh KS, Qi MJ, Zang XN et al. High-voltage flexible microsupercapacitors based on laser-induced graphene. ACS Appl Mater Interfaces 10, 26357–26364 (2018). doi: 10.1021/acsami.8b10301

    CrossRef Google Scholar

    [75] Thekkekara LV, Gu M. Bioinspired fractal electrodes for solar energy storages. Sci Rep 7, 45585 (2017). doi: 10.1038/srep45585

    CrossRef Google Scholar

    [76] Li L, Zhang JB, Peng ZW, Li YL, Gao CT et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 28, 838–845 (2016). doi: 10.1002/adma.201503333

    CrossRef Google Scholar

    [77] Liu HL, Moon KS, Li JX, Xie YX, Liu J et al. Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy 77, 105058 (2020). doi: 10.1016/j.nanoen.2020.105058

    CrossRef Google Scholar

    [78] Liu CL, Liang HW, Wu D, Lu XY, Wang Q. Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor. Adv Electron Mater 4, 1800092 (2018). doi: 10.1002/aelm.201800092

    CrossRef Google Scholar

    [79] Xie BH, Wang Y, Lai WH, Lin W, Lin ZY et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 26, 276–285 (2016). doi: 10.1016/j.nanoen.2016.04.045

    CrossRef Google Scholar

    [80] Shen DZ, Zou GS, Liu L, Zhao WZ, Wu AP et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer. ACS Appl Mater Interfaces 10, 5404–5412 (2018). doi: 10.1021/acsami.7b14410

    CrossRef Google Scholar

    [81] Thekkekara LV, Chen X, Gu M. Two-photon-induced stretchable graphene supercapacitors. Sci Rep 8, 11722 (2018). doi: 10.1038/s41598-018-30194-2

    CrossRef Google Scholar

    [82] Zhang WL, Lei YJ, Jiang Q, Ming FW, Costa PMFJ et al. 3D laser scribed graphene derived from carbon nanospheres: an ultrahigh‐power electrode for supercapacitors. Small Methods 3, 1900005 (2019). doi: 10.1002/smtd.201900005

    CrossRef Google Scholar

    [83] Kwon S, Yoon Y, Ahn J, Lim H, Kim G et al. Facile laser fabrication of high quality graphene-based microsupercapacitors with large capacitance. Carbon 137, 136–145 (2018). doi: 10.1016/j.carbon.2018.05.031

    CrossRef Google Scholar

    [84] Kamboj N, Purkait T, Das M, Sarkar S, Hazra KS et al. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ Sci 12, 2507–2517 (2019). doi: 10.1039/C9EE01458F

    CrossRef Google Scholar

    [85] Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50, 3257–3261 (2011). doi: 10.1002/anie.201006768

    CrossRef Google Scholar

    [86] Yang Z, Yao Z, Li GF, Fang GY, Nie HG et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012). doi: 10.1021/nn203393d

    CrossRef Google Scholar

    [87] Wu ZS, Winter A, Chen L, Sun Y, Turchanin A et al. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24, 5130–5135 (2012). doi: 10.1002/adma.201201948

    CrossRef Google Scholar

    [88] Fu XY, Chen DL, Liu Y, Jiang HB, Xia H et al. Laser reduction of nitrogen-rich carbon nanoparticles@graphene oxides composites for high rate performance supercapacitors. ACS Appl Nano Mater 1, 777–784 (2018).

    Google Scholar

    [89] Wang FC, Dong X, Wang KD, Duan WQ, Gao M et al. Laser-induced nitrogen-doped hierarchically porous graphene for advanced electrochemical energy storage. Carbon 150, 396–407 (2019). doi: 10.1016/j.carbon.2019.05.037

    CrossRef Google Scholar

    [90] Liu HL, Xie YX, Liu JB, Moon KS, Lu LS et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chem Eng J 393, 124672 (2020). doi: 10.1016/j.cej.2020.124672

    CrossRef Google Scholar

    [91] Fang Y, Luo B, Jia YY, Li XL, Wang B et al. Renewing functionalized graphene as electrodes for high‐performance supercapacitors. Adv Mater 24, 6348–6355 (2012). doi: 10.1002/adma.201202774

    CrossRef Google Scholar

    [92] Amiri MH, Namdar N, Mashayekhi A, Ghasemi F, Sanaee Z et al. Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite. J Nanopart Res 18, 237 (2016). doi: 10.1007/s11051-016-3552-5

    CrossRef Google Scholar

    [93] Lee SM, Park YJ, Kim JH. Laser reduction of Zn-infiltrated multilayered graphene oxide as electrode materials for supercapacitors. ACS Appl Nano Mater 2, 3711–3717 (2019). doi: 10.1021/acsanm.9b00618

    CrossRef Google Scholar

    [94] Fu XY, Chen ZD, Zhang YL, Han DD, Ma JN et al. Direct laser writing of flexible planar supercapacitors based on GO and black phosphorus quantum dot nanocomposites. Nanoscale 11, 9133–9140 (2019). doi: 10.1039/C9NR02530H

    CrossRef Google Scholar

    [95] Li GJ, Mo XY, Law WC, Chan KC. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J Mater Chem A 7, 4055–4062 (2019). doi: 10.1039/C8TA11121A

    CrossRef Google Scholar

    [96] Wang WT, Lu LS, Xie YX, Wu WB, Liang RX et al. Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Sci China Technol Sci 64, 651–661 (2020). doi: 10.1007/s11431-019-1543-y

    CrossRef Google Scholar

    [97] Xu RX, Zverev A, Hung A, Shen CW, Irie L et al. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst Nanoeng 4, 36 (2018). doi: 10.1038/s41378-018-0036-z

    CrossRef Google Scholar

    [98] Liang Y, Wang Z, Huang J, Cheng HH, Zhao F et al. Series of in-fiber graphene supercapacitors for flexible wearable devices. J Mater Chem A 3, 2547–2551 (2015). doi: 10.1039/C4TA06574C

    CrossRef Google Scholar

    [99] Liu Q, Shi QW, Wang HZ, Zhang QH, Li YG. Laser irradiated self-supporting and flexible 3-dimentional graphene-based film electrode with promising electrochemical properties. RSC Adv 5, 47074–47079 (2015). doi: 10.1039/C5RA08431H

    CrossRef Google Scholar

    [100] Borenstein A, Strauss V, Kowal MD, Yoonessi M, Muni M et al. Laser-reduced graphene-oxide/ferrocene: a 3-D redox-active composite for supercapacitor electrodes. J Mater Chem A 6, 20463–20472 (2018). doi: 10.1039/C8TA08249A

    CrossRef Google Scholar

    [101] Yang SH, Liu YY, Hao YF, Yang XP, Goddard III WA et al. Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci (Weinh) 5, 1700659 (2018). doi: 10.1002/advs.201700659

    CrossRef Google Scholar

    [102] Hondred JA, Medintz IL, Claussen JC. Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography. Nanoscale Horiz 4, 735–746 (2019). doi: 10.1039/C8NH00377G

    CrossRef Google Scholar

    [103] Yang SH, Li Y, Sun J, Cao BQ. Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J Power Sources 431, 220–225 (2019). doi: 10.1016/j.jpowsour.2019.05.016

    CrossRef Google Scholar

    [104] Ladrón-de-Guevara A, Boscá A, Pedrós J, Climent-Pascual E, de Andrés A et al. Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Appl Surf Sci 467–468, 691–697 (2019).

    Google Scholar

    [105] Cho EC, Chang-Jian CW, Syu WL, Tseng HS, Lee KC et al. PEDOT-modified laser-scribed graphene films as bginder-and metallic current collector-free electrodes for large-sized supercapacitors. Appl Surf Sci 518, 146193 (2020). doi: 10.1016/j.apsusc.2020.146193

    CrossRef Google Scholar

    [106] Naoi K, Ishimoto S, Miyamoto JI, Naoi W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5, 9363–9373 (2012). doi: 10.1039/c2ee21675b

    CrossRef Google Scholar

    [107] del Pino ÁP, Ramadan MA, Lebière PG, Ivan R, Logofatu C et al. Fabrication of graphene-based electrochemical capacitors through reactive inverse matrix assisted pulsed laser evaporation. Appl Surf Sci 484, 245–256 (2019). doi: 10.1016/j.apsusc.2019.04.127

    CrossRef Google Scholar

    [108] Wang YG, Wang ZD, Xia YY. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50, 5641–5646 (2005). doi: 10.1016/j.electacta.2005.03.042

    CrossRef Google Scholar

    [109] Lee SH, Kim JH, Yoon JR. Laser scribed graphene cathode for next generation of high performance hybrid supercapacitors. Sci Rep 8, 8179 (2018). doi: 10.1038/s41598-018-26503-4

    CrossRef Google Scholar

    [110] Lee SH, Kim KY, Yoon JR. Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Mater 12, 28 (2020). doi: 10.1038/s41427-020-0204-0

    CrossRef Google Scholar

    [111] Clerici F, Fontana M, Bianco S, Serrapede M, Perrucci F et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 8, 10459–10465 (2016). doi: 10.1021/acsami.6b00808

    CrossRef Google Scholar

    [112] Thekkekara LV, Gu M. Large-scale waterproof and stretchable textile-integrated laser- printed graphene energy storages. Sci Rep 9, 11822 (2019). doi: 10.1038/s41598-019-48320-z

    CrossRef Google Scholar

    [113] Lamberti A, Clerici F, Fontana M, Scaltrito L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv Energy Mater 6, 1600050 (2016). doi: 10.1002/aenm.201600050

    CrossRef Google Scholar

    [114] Parmeggiani M, Zaccagnini P, Stassi S, Fontana M, Bianco S et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl Mater Interfaces 11, 33221–33230 (2019). doi: 10.1021/acsami.9b10408

    CrossRef Google Scholar

    [115] Shao CX, Xu T, Gao J, Liang Y, Zhao Y et al. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 9, 12324–12329 (2017). doi: 10.1039/C7NR04889K

    CrossRef Google Scholar

    [116] Gao J, Shao CX, Shao SX, Wan F, Gao C et al. Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14, e1801809 (2018). doi: 10.1002/smll.201801809

    CrossRef Google Scholar

    [117] Stanford MG, Zhang C, Fowlkes JD, Hoffman A, Ivanov IN et al. High-resolution laser-induced graphene. flexible electronics beyond the visible limit. ACS Appl Mater Interfaces 12, 10902–10907 (2020). doi: 10.1021/acsami.0c01377

    CrossRef Google Scholar

    [118] Kumar R, Savu R, Joanni E, Vaz AR, Canesqui MA et al. Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Adv 6, 84769–84776 (2016). doi: 10.1039/C6RA17516C

    CrossRef Google Scholar

    [119] In JB, Hsia B, Yoo JH, Hyun S, Carraro C et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83, 144–151 (2015). doi: 10.1016/j.carbon.2014.11.017

    CrossRef Google Scholar

    [120] Wang ST, Yu YC, Li RZ, Feng GY, Wu ZL et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochim Acta 241, 153–161 (2017). doi: 10.1016/j.electacta.2017.04.138

    CrossRef Google Scholar

    [121] Yuan YJ, Jiang L, Li X, Zuo P, Xu CY et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2

    CrossRef Google Scholar

    [122] Thekkekara LV, Jia BH, Zhang YN, Qiu L, Li DAN et al. On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Appl Phys Lett 107, 031105 (2015). doi: 10.1063/1.4927145

    CrossRef Google Scholar

    [123] Liu HH, Li MP, Kaner RB, Chen SY, Pei QB. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl Mater Interfaces 10, 15609–15615 (2018). doi: 10.1021/acsami.8b00014

    CrossRef Google Scholar

    [124] Cai JG, Lv C, Watanabe A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016). doi: 10.1016/j.nanoen.2016.09.017

    CrossRef Google Scholar

    [125] Kim SL, Hsu JH, Yu C. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy 48, 582–589 (2018). doi: 10.1016/j.nanoen.2018.04.015

    CrossRef Google Scholar

    [126] Liu Q, Hao ZM, Liao XB, Pan XL, Li SX et al. Langmuir-blodgett nanowire devices for in situ probing of zinc-ion batteries. Small 15, e1902141 (2019). doi: 10.1002/smll.201902141

    CrossRef Google Scholar

    [127] Hossain MM, Gu M. Radiative cooling: principles, progress, and potentials. Adv Sci (Weinh) 3, 1500360 (2016). doi: 10.1002/advs.201500360

    CrossRef Google Scholar

    [128] Hossain MM, Jia BH, Gu M. A metamaterial emitter for highly efficient radiative cooling. Adv Opt Mater 3, 1047–1051 (2015). doi: 10.1002/adom.201500119

    CrossRef Google Scholar

    [129] Zhang YN, Chen X, Cai BY, Luan HT, Zhang QM et al. Photonics empowered passive radiative cooling. Adv Photonics Res 2, 2000106 (2020). doi: 10.1002/adpr.202000106

    CrossRef Google Scholar

    [130] Li W, Shi Y, Chen KF, Zhu LX, Fan SH. A comprehensive photonic approach for solar cell cooling. ACS Photonics 4, 774–782 (2017). doi: 10.1021/acsphotonics.7b00089

    CrossRef Google Scholar

    [131] Gu M, Fang XY, Ren HR, Goi E. Optically digitalized holography: a perspective for all-optical machine learning. Engineering 5, 363–365 (2019). doi: 10.1016/j.eng.2019.04.002

    CrossRef Google Scholar

    [132] Goi E, Chen X, Zhang QM, Cumming BP, Schoenhardt S et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light: Sci Appl 10, 40 (2021). doi: 10.1038/s41377-021-00483-z

    CrossRef Google Scholar

    [133] Goi E, Zhang QM, Chen X, Luan HT, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX 1, 3 (2020). doi: 10.1186/s43074-020-0001-6

    CrossRef Google Scholar

    [134] Ren HR, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 6, eaaz4261 (2020). doi: 10.1126/sciadv.aaz4261

    CrossRef Google Scholar

    [135] Zhang QM, Yu HY, Barbiero M, Wang BK, Gu M. Artificial neural networks enabled by nanophotonics. Light: Sci Appl 8, 42 (2019). doi: 10.1038/s41377-019-0151-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint