Zhao YZ, Su YL, Hou XY, Hong MH. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4, 210008 (2021).. doi: 10.29026/oea.2021.210008
Citation: Zhao YZ, Su YL, Hou XY, Hong MH. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4, 210008 (2021).. doi: 10.29026/oea.2021.210008

Original Article Open Access

Directional sliding of water: biomimetic snake scale surfaces

More Information
  • Bioinspired superhydrophobic surfaces have attracted many industrial and academic interests in recent years. Inspired by unique superhydrophobicity and anisotropic friction properties of snake scale surfaces, this study explores the feasibility to produce a bionic superhydrophobic stainless steel surface via laser precision engineering, which allows the realization of directional superhydrophobicity and dynamic control of its water transportation. Dynamic mechanism of water sliding on hierarchical snake scale structures is studied, which is the key to reproduce artificially bioinspired multifunctional materials with great potentials to be used for water harvesting, droplet manipulation, pipeline transportation, and vehicle acceleration.
  • 加载中
  • [1] Feng L, Li S, Li Y, Li H, Zhang L et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14, 1857–1860 (2002). doi: 10.1002/adma.200290020

    CrossRef Google Scholar

    [2] Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater 18, 3063–3078 (2006). doi: 10.1002/adma.200501961

    CrossRef Google Scholar

    [3] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20, 4049–4054 (2008). doi: 10.1002/adma.200800651

    CrossRef Google Scholar

    [4] Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4, 277–288 (2005). doi: 10.1038/nmat1339

    CrossRef Google Scholar

    [5] Gao XF, Jiang L. Water-repellent legs of water striders. Nature 432, 36 (2004). doi: 10.1038/432036a

    CrossRef Google Scholar

    [6] Zheng YM, Bai H, Huang ZB, Tian XL, Nie FQ et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010). doi: 10.1038/nature08729

    CrossRef Google Scholar

    [7] Zhang DS, Ranjan B, Tanaka T, Sugioka K. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces. ACS Appl Nano Mater 3, 1855–1871 (2020). doi: 10.1021/acsanm.9b02520

    CrossRef Google Scholar

    [8] Lou S, Guo XM, Fan TX, Zhang D. Butterflies: inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ Sci 5, 9195–9216 (2012). doi: 10.1039/c2ee03595b

    CrossRef Google Scholar

    [9] Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G et al. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 15, 20170948 (2018). doi: 10.1098/rsif.2017.0948

    CrossRef Google Scholar

    [10] Spinner M, Gorb SN, Balmert A, Bleckmann H, Westhoff G. Non-contaminating camouflage: multifunctional skin microornamentation in the west african gaboon viper (Bitis rhinoceros). PLoS One 9, e91087 (2014). doi: 10.1371/journal.pone.0091087

    CrossRef Google Scholar

    [11] Zheng L, Zhong YH, Gao YH, Li JY, Zhang ZH et al. Coupling effect of morphology and mechanical properties contributes to the tribological behaviors of snake scales. J Bionic Eng 15, 481–493 (2018). doi: 10.1007/s42235-018-0039-3

    CrossRef Google Scholar

    [12] Ball P. Engineering shark skin and other solutions. Nature 400, 507–509 (1999). doi: 10.1038/22883

    CrossRef Google Scholar

    [13] Lu Y, Sathasivam S, Song JL, Crick CR, Carmalt CJ et al. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132–1135 (2015). doi: 10.1126/science.aaa0946

    CrossRef Google Scholar

    [14] Zang DM, Zhu RW, Zhang W, Yu XQ, Lin L et al. Corrosion-resistant superhydrophobic coatings on mg alloy surfaces inspired by lotus seedpod. Adv Funct Mater 27, 1605446 (2017). doi: 10.1002/adfm.201605446

    CrossRef Google Scholar

    [15] Chen FZ, Lu Y, Liu X, Song JL, He GJ et al. Table salt as a template to prepare reusable porous PVDF–MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions. Adv Funct Mater 27, 1702926 (2017). doi: 10.1002/adfm.201702926

    CrossRef Google Scholar

    [16] Golovin K, Dhyani A, Thouless MD, Tuteja A. Low-interfacial toughness materials for effective large-scale deicing. Science 364, 371–375 (2019). doi: 10.1126/science.aav1266

    CrossRef Google Scholar

    [17] Lai YK, Huang JY, Cui ZQ, Ge MZ, Zhang KQ et al. Recent advances in TiO2‐based nanostructured surfaces with controllable wettability and adhesion. Small 12, 2203–2224 (2016). doi: 10.1002/smll.201501837

    CrossRef Google Scholar

    [18] Liu YB, Gu HM, Jia Y, Liu J, Zhang H et al. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chem Eng J 356, 318–328 (2019). doi: 10.1016/j.cej.2018.09.022

    CrossRef Google Scholar

    [19] Zhuang AY, Liao RJ, Lu Y, Dixon SC, Jiamprasertboon A et al. Transforming a simple commercial glue into highly robust superhydrophobic surfaces via aerosol-assisted chemical vapor deposition. ACS Appl Mater Interfaces 9, 42327–42335 (2017). doi: 10.1021/acsami.7b13182

    CrossRef Google Scholar

    [20] Zhu YZ, Wang JL, Zhang F, Gao SJ, Wang AQ et al. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil‐in‐water emulsion separation. Adv Funct Mater 28, 1804121 (2018). doi: 10.1002/adfm.201804121

    CrossRef Google Scholar

    [21] Ellinas K, Chatzipetrou M, Zergioti I, Tserepi A, Gogolides E. Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high‐ and low‐surface‐tension mixtures, tested with laser‐induced forward transfer of drops. Adv Mater 27, 2231–2235 (2015). doi: 10.1002/adma.201405855

    CrossRef Google Scholar

    [22] Tang M, Hong MH, Choo YS, Tang Z, Chua DHC. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth. Appl Phys A 101, 503–508 (2010). doi: 10.1007/s00339-010-5887-6

    CrossRef Google Scholar

    [23] Tang M, Shim V, Pan ZY, Choo YS, Hong MH. Laser ablation of metal substrates for super-hydrophobic effect. J Laser Micro/Nanoeng 6, 6–9 (2011). doi: 10.2961/jlmn.2011.01.0002

    CrossRef Google Scholar

    [24] Zhou R, Lin SD, Shen F, Khew SY, Hong MH. A universal copper mesh with on-demand wettability fabricated by pulsed laser ablation for oil/water separation. Surf Coat Technol 348, 73–80 (2018). doi: 10.1016/j.surfcoat.2018.05.035

    CrossRef Google Scholar

    [25] Yan HP, Rashid MRBA, Khew SY, Li FP, Hong MH. Wettability transition of laser textured brass surfaces inside different mediums. Appl Surf Sci 427, 369–375 (2018). doi: 10.1016/j.apsusc.2017.08.218

    CrossRef Google Scholar

    [26] Wang DH, Sun QQ, Hokkanen MJ, Zhang CL, Lin FY et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020). doi: 10.1038/s41586-020-2331-8

    CrossRef Google Scholar

    [27] Cao WT, Feng W, Jiang YY, Ma C, Zhou ZF et al. Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater Horiz 6, 1057–1065 (2019). doi: 10.1039/C8MH01566J

    CrossRef Google Scholar

    [28] Song JL, Guan FS, Pan WH, Liu ZA, Sun J et al. Droplet-based self-propelled miniboat. Adv Funct Mater 30, 1910778 (2020). doi: 10.1002/adfm.201910778

    CrossRef Google Scholar

    [29] Wang JN, Liu YQ, Zhang YL, Feng J, Wang H et al. Wearable superhydrophobic elastomer skin with switchable wettability. Adv Funct Mater 28, 1800625 (2018). doi: 10.1002/adfm.201800625

    CrossRef Google Scholar

    [30] Paradisanos I, Fotakis C, Anastasiadis SH, Stratakis E. Gradient induced liquid motion on laser structured black Si surfaces. Appl Phys Lett 107, 111603 (2015). doi: 10.1063/1.4930959

    CrossRef Google Scholar

    [31] Kirner SV, Hermens U, Mimidis A, Skoulas E, Florian C et al. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel. Appl Phys A 123, 754 (2017). doi: 10.1007/s00339-017-1317-3

    CrossRef Google Scholar

    [32] Wu D, Zhang Z, Zhang YY, Jiao YL, Jiang SJ et al. High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays. Adv Mater 32, 2005039 (2020). doi: 10.1002/adma.202005039

    CrossRef Google Scholar

    [33] Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019).

    Google Scholar

    [34] Ma WZ, Zhao DS, Liu RM, Wang TS, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). doi: 10.29026/oea.2020.200001

    CrossRef Google Scholar

    [35] Li Y, Hong MH. Parallel laser micro/Nano-processing for functional device fabrication. Laser Photonics Rev 14, 1900062 (2020). doi: 10.1002/lpor.201900062

    CrossRef Google Scholar

    [36] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [37] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [38] Stratakis E, Bonse J, Heitz J, Siegel J, Tsibidis GD et al. Laser engineering of biomimetic surfaces. Mat Sci Eng: R: Rep 141, 100562 (2020). doi: 10.1016/j.mser.2020.100562

    CrossRef Google Scholar

    [39] Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem 28, 988–994 (1936). doi: 10.1021/ie50320a024

    CrossRef Google Scholar

    [40] Tamaura Y, Tahata M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature 346, 255–256 (1990). doi: 10.1038/346255a0

    CrossRef Google Scholar

    [41] Zhang CL, Li S, Wang LJ, Wu TH, Peng SY. Studies on the decomposing carbon dioxide into carbon with oxygen-deficient magnetite: II. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction. Mater Chem Phys 62, 52–61 (2000). doi: 10.1016/S0254-0584(99)00168-6

    CrossRef Google Scholar

    [42] Zhang CL, Li S, Wang LJ, Wu TH, Peng SY. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite: I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide. Mater Chem Phys 62, 44–51 (2000). doi: 10.1016/S0254-0584(99)00169-8

    CrossRef Google Scholar

    [43] Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ et al. Superhydrophobic carbon nanotube forests. Nano Lett 3, 1701–1705 (2003). doi: 10.1021/nl034704t

    CrossRef Google Scholar

    [44] Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc 40, 546–551 (1944). doi: 10.1039/tf9444000546

    CrossRef Google Scholar

    [45] Rowlinson JS, Widom B. Molecular Theory of Capillarity (Clarendon Press, Oxford, Oxfordshire, 1982).

    Google Scholar

    [46] Nguyen VT, Park WG. A free surface flow solver for complex three-dimensional water impact problems based on the VOF method. Int J Numer Methods Fluids 82, 3–34 (2016). doi: 10.1002/fld.4203

    CrossRef Google Scholar

  • Movie S1
    Movie S2
    Movie S3
    Movie S4
    Movie S5
    Movie S6
    Movie S7
    Movie S8
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint