Citation: |
|
[1] | Rayleigh SRSL. XV. On the theory of optical images, with special reference to the microscope. London, Edinb, Dublin Philos Mag J Sci 42, 167–195 (1896). doi: 10.1080/14786449608620902 |
[2] | Zhang X, Liu ZW. Superlenses to overcome the diffraction limit. Nat Mater 7, 435–441 (2008). doi: 10.1038/nmat2141 |
[3] | Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966 |
[4] | Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759 |
[5] | Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y et al. Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1, 175 (2011). doi: 10.1038/srep00175 |
[6] | Gramotnev DK, Bozhevolnyi SI. Nanofocusing of electromagnetic radiation. Nat Photon 8, 13–22 (2014). doi: 10.1038/nphoton.2013.232 |
[7] | Ling L, Goh XM, McGuinness LP, Roberts A. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett 10, 1936–1940 (2010). doi: 10.1021/nl1009712 |
[8] | Shi HF, Wang CT, Du CL, Luo XG, Dong XC et al. Beam manipulating by metallic nano-slits with variant widths. Opt Express 13, 6815–6820 (2005). doi: 10.1364/OPEX.13.006815 |
[9] | Verslegers L, Catrysse PB, Yu ZF, White JS, Barnard ES et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9, 235–238 (2009). doi: 10.1021/nl802830y |
[10] | Yu YT, Zappe H. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design. Opt Express 19, 9434–9444 (2011). doi: 10.1364/OE.19.009434 |
[11] | Yu YT, Zappe H. Theory and implementation of focal shift of plasmonic lenses. Opt Lett 37, 1592–1594 (2012). doi: 10.1364/OL.37.001592 |
[12] | Zhu YC, Yuan WZ, Yu YT, Diao JS. Metallic planar lens formed by coupled width-variable nanoslits for superfocusing. Opt Express 23, 20124–20131 (2015). doi: 10.1364/OE.23.020124 |
[13] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[14] | Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686 |
[15] | Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213 |
[16] | Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494 |
[17] | Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[18] | Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888 |
[19] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[20] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[21] | Park JS, Zhang SY, She AL, Chen WT, Lin P et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett 19, 8673–8682 (2019). doi: 10.1021/acs.nanolett.9b03333 |
[22] | Zhu YC, Yuan WZ, Li WL, Sun H, Qi KL et al. TE-polarized design for metallic slit lenses: a way to deep-subwavelength focusing over a broad wavelength range. Opt Lett 43, 206–209 (2018). doi: 10.1364/OL.43.000206 |
[23] | Zhu YC, Zhou S, Wang ZH, Yu YT, Yuan WZ et al. Investigation on super-resolution focusing performance of a TE-polarized nanoslit-based two-dimensional lens. Nanomaterials 10, 3 (2020). |
[24] | Pang Y, Genet C, Ebbesen TW. Optical transmission through subwavelength slit apertures in metallic films. Opt Commun 280, 10–15 (2007). doi: 10.1016/j.optcom.2007.07.063 |
[25] | Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L. Light passing through subwavelength apertures. Rev Mod Phys 82, 729–787 (2010). doi: 10.1103/RevModPhys.82.729 |
[26] | Takakura Y. Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 86, 5601–5603 (2001). doi: 10.1103/PhysRevLett.86.5601 |
[27] | Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370 |
(a) The illustration of the superlens formed by an array of width-varied nanoslits perforated in a gold film on a glass substrate. All the nanoslits have the same length l. The width of each nanoslit w is variable. (b) Schematic focusing of the superlens based on the principle of optical interference under the normal illumination of a TE-polarized plane wave. d is the thickness of gold film and f is the focal distance.
Electric field distributions and Fourier spectra of a metasurface superlense. The FDTD simulated intensity distributions (a) in the y-z plane at x=0, (b) at the focal plane, and (c) in k-space near the superlens focus. The plane z=0 is the exit surface of the superlens. Corresponding theoretically calculated electric field intensity distributions (d) in the y-z plane at x=0, (e) at the focal plane, and (f) in k-space near the superlens focus.
Experimental demonstration of the quasi-far-field super-resolution focusing superlens. (a) A scanning electron micrograph of the fabricated superlens using FIB. (b) Measured intensity distributions in the y-z plane at x=0. (c) The measured and FDTD simulated intensity distribution at the focal plane.