Zhu YC, Chen XL, Yuan WZ, Chu ZQ, Wong KY et al. A waveguide metasurface based quasi-far-field transverse-electric superlens. Opto-Electron Adv 4, 210013 (2021). doi: 10.29026/oea.2021.210013
Citation: Zhu YC, Chen XL, Yuan WZ, Chu ZQ, Wong KY et al. A waveguide metasurface based quasi-far-field transverse-electric superlens. Opto-Electron Adv 4, 210013 (2021) . doi: 10.29026/oea.2021.210013

Original Article Open Access

A waveguide metasurface based quasi-far-field transverse-electric superlens

More Information
  • The imaging capability of conventional lenses is mainly limited by the diffraction of light, and the so-called superlens has been developed allowing the recovery of evanescent waves in the focal plane. However, the remarkable focusing behavior of the superlens is greatly confined in the near-field regime due to the exponential decay of evanescent waves. To tackle this issue, we design a waveguide metasurface-based superlens with an extraordinary quasi-far-field focusing capability beyond the diffraction limit in the present work. Specifically, we analyze the underlying physical mechanism and provide experimental verification of the proposed superlens. The metasurface superlens is formed by an array of gradient nanoslits perforated in a gold slab, and supports transverse-electric (TE) waveguide modes under linearly polarized illumination along the long axis of the slits. Numerical results illustrate that exciting such TE waveguide modes can modulate not only optical phase but also evanescent waves. Consequently, some high-spatial-frequency waves can contribute to the focusing of the superlens, leading to the quasi-far-field super-resolution focusing of light. Under 405 nm illumination and oil immersion, the fabricated superlens shows a focus spot of 98 nm (i.e. λ/4.13) at a focal distance of 1.49 μm (i.e. 3.68λ) using an oil immersion objective, breaking the diffraction limit of λ/2.38 in the quasi-far field regime. The developed metasurface optical superlens with such extraordinary capabilities promises exciting avenues to nanolithography and ultra-small optoelectronic devices.
  • 加载中
  • [1] Rayleigh SRSL. XV. On the theory of optical images, with special reference to the microscope. London, Edinb, Dublin Philos Mag J Sci 42, 167–195 (1896). doi: 10.1080/14786449608620902

    CrossRef Google Scholar

    [2] Zhang X, Liu ZW. Superlenses to overcome the diffraction limit. Nat Mater 7, 435–441 (2008). doi: 10.1038/nmat2141

    CrossRef Google Scholar

    [3] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [4] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [5] Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y et al. Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1, 175 (2011). doi: 10.1038/srep00175

    CrossRef Google Scholar

    [6] Gramotnev DK, Bozhevolnyi SI. Nanofocusing of electromagnetic radiation. Nat Photon 8, 13–22 (2014). doi: 10.1038/nphoton.2013.232

    CrossRef Google Scholar

    [7] Ling L, Goh XM, McGuinness LP, Roberts A. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett 10, 1936–1940 (2010). doi: 10.1021/nl1009712

    CrossRef Google Scholar

    [8] Shi HF, Wang CT, Du CL, Luo XG, Dong XC et al. Beam manipulating by metallic nano-slits with variant widths. Opt Express 13, 6815–6820 (2005). doi: 10.1364/OPEX.13.006815

    CrossRef Google Scholar

    [9] Verslegers L, Catrysse PB, Yu ZF, White JS, Barnard ES et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9, 235–238 (2009). doi: 10.1021/nl802830y

    CrossRef Google Scholar

    [10] Yu YT, Zappe H. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design. Opt Express 19, 9434–9444 (2011). doi: 10.1364/OE.19.009434

    CrossRef Google Scholar

    [11] Yu YT, Zappe H. Theory and implementation of focal shift of plasmonic lenses. Opt Lett 37, 1592–1594 (2012). doi: 10.1364/OL.37.001592

    CrossRef Google Scholar

    [12] Zhu YC, Yuan WZ, Yu YT, Diao JS. Metallic planar lens formed by coupled width-variable nanoslits for superfocusing. Opt Express 23, 20124–20131 (2015). doi: 10.1364/OE.23.020124

    CrossRef Google Scholar

    [13] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [14] Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [15] Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [16] Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [17] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [18] Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [19] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [20] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [21] Park JS, Zhang SY, She AL, Chen WT, Lin P et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett 19, 8673–8682 (2019). doi: 10.1021/acs.nanolett.9b03333

    CrossRef Google Scholar

    [22] Zhu YC, Yuan WZ, Li WL, Sun H, Qi KL et al. TE-polarized design for metallic slit lenses: a way to deep-subwavelength focusing over a broad wavelength range. Opt Lett 43, 206–209 (2018). doi: 10.1364/OL.43.000206

    CrossRef Google Scholar

    [23] Zhu YC, Zhou S, Wang ZH, Yu YT, Yuan WZ et al. Investigation on super-resolution focusing performance of a TE-polarized nanoslit-based two-dimensional lens. Nanomaterials 10, 3 (2020).

    Google Scholar

    [24] Pang Y, Genet C, Ebbesen TW. Optical transmission through subwavelength slit apertures in metallic films. Opt Commun 280, 10–15 (2007). doi: 10.1016/j.optcom.2007.07.063

    CrossRef Google Scholar

    [25] Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L. Light passing through subwavelength apertures. Rev Mod Phys 82, 729–787 (2010). doi: 10.1103/RevModPhys.82.729

    CrossRef Google Scholar

    [26] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 86, 5601–5603 (2001). doi: 10.1103/PhysRevLett.86.5601

    CrossRef Google Scholar

    [27] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint