Ma HG, Ren SL, Wei X et al. Enhanced photoacoustic microscopy with physics-embedded degeneration learning. Opto-Electron Adv 8, 240189 (2025). doi: 10.29026/oea.2025.240189
Citation: Ma HG, Ren SL, Wei X et al. Enhanced photoacoustic microscopy with physics-embedded degeneration learning. Opto-Electron Adv 8, 240189 (2025). doi: 10.29026/oea.2025.240189

Article Open Access

Enhanced photoacoustic microscopy with physics-embedded degeneration learning

More Information
  • Deep learning (DL) is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy (PAM). Off-the-shelf DL models, however, do not necessarily obey the fundamental governing laws of PAM physical systems, nor do they generalize well to scenarios on which they have not been trained. In this work, a physics-embedded degeneration learning (PEDL) approach is proposed to enhance the image quality of PAM with a self-attention enhanced U-Net network, which obtains greater physical consistency, improves data efficiency, and higher adaptability. The proposed method is demonstrated on both synthetic and real datasets, including animal experiments in vivo (blood vessels of mouse's ear and brain). And the results show that compared with previous DL methods, the PEDL algorithm exhibits good performance in recovering PAM images qualitatively and quantitatively. It overcomes the challenges related to training data, accuracy, and robustness which a typical data-driven approach encounters, whose exemplary application envisions to provide a new perspective for existing DL tools of enhanced PAM.
  • 加载中
  • [1] Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3, 503–509 (2009). doi: 10.1038/nphoton.2009.157

    CrossRef Google Scholar

    [2] Yao JJ, Wang LV. Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media Mol. Imaging 6, 332–345 (2011). doi: 10.1002/cmmi.443

    CrossRef Google Scholar

    [3] Yu YS, Feng T, Qiu HX et al. Simultaneous photoacoustic and ultrasound imaging: a review. Ultrasonics 139, 107277 (2024). doi: 10.1016/j.ultras.2024.107277

    CrossRef Google Scholar

    [4] Abdullah A, Shahini M, Pak A. An approach to design a high power piezoelectric ultrasonic transducer. J Electroceram 22, 369–382 (2009). doi: 10.1007/s10832-007-9408-8

    CrossRef Google Scholar

    [5] Zeng YG, Da X, Wang Y et al. Photoacoustic and ultrasonic coimage with a linear transducer array. Opt Lett 29, 1760–1762 (2004). doi: 10.1364/OL.29.001760

    CrossRef Google Scholar

    [6] Xu MH, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71, 016706 (2005). doi: 10.1103/PhysRevE.71.016706

    CrossRef Google Scholar

    [7] Beard P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). doi: 10.1098/rsfs.2011.0028

    CrossRef Google Scholar

    [8] Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng 16, 155–185 (2014). doi: 10.1146/annurev-bioeng-071813-104553

    CrossRef Google Scholar

    [9] Yao JJ, Wang LV. Photoacoustic microscopy. Laser Photonics Rev 7, 758–778 (2013). doi: 10.1002/lpor.201200060

    CrossRef Google Scholar

    [10] Cao R, Li J, Ning B et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain. Neuroimage 150, 77–87 (2017). doi: 10.1016/j.neuroimage.2017.01.049

    CrossRef Google Scholar

    [11] Wong TTW, Zhang RY, Hai PF et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci Adv 3, e1602168 (2017). doi: 10.1126/sciadv.1602168

    CrossRef Google Scholar

    [12] Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 19, 365–384 (2022). doi: 10.1038/s41571-022-00615-3

    CrossRef Google Scholar

    [13] Favazza CP, Wang LV, Jassim OW et al. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J Biomed Opt 16, 016015 (2011).

    Google Scholar

    [14] Zhu XY, Huang Q, DiSpirito A et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. Light Sci Appl 11, 138 (2022). doi: 10.1038/s41377-022-00836-2

    CrossRef Google Scholar

    [15] Jeon S, Kim J, Lee D et al. Review on practical photoacoustic microscopy. Photoacoustics 15, 100141 (2019). doi: 10.1016/j.pacs.2019.100141

    CrossRef Google Scholar

    [16] Wu JH, Feng T, Chen Q et al. Photoacoustic guided wavefront shaping using digital micromirror devices. Opt Laser Technol 174, 110570 (2024). doi: 10.1016/j.optlastec.2024.110570

    CrossRef Google Scholar

    [17] Chen JB, Zhang YC, He LY et al. Wide-field polygon-scanning photoacoustic microscopy of oxygen saturation at 1-MHz A-line rate. Photoacoustics 20, 100195 (2020). doi: 10.1016/j.pacs.2020.100195

    CrossRef Google Scholar

    [18] Jeon S, Park J, Managuli R et al. A novel 2-D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy. IEEE Trans Med Imaging 38, 250–260 (2019). doi: 10.1109/TMI.2018.2861400

    CrossRef Google Scholar

    [19] Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110, 2756–2782 (2010). doi: 10.1021/cr900266s

    CrossRef Google Scholar

    [20] Telenkov SA, Alwi R, Mandelis A. Photoacoustic correlation signal-to-noise ratio enhancement by coherent averaging and optical waveform optimization. Rev Sci Instrum 84, 104907 (2013). doi: 10.1063/1.4825034

    CrossRef Google Scholar

    [21] Sun MJ, Feng NZ, Shen Y et al. Photoacoustic signals denoising based on empirical mode decomposition and energy-window method. Adv Adapt Data Anal 4, 1250004 (2012). doi: 10.1142/S1793536912500045

    CrossRef Google Scholar

    [22] Haq IU, Nagoaka R, Makino T et al. 3D Gabor wavelet based vessel filtering of photoacoustic images. In Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3883–3886 (IEEE, 2016); http://doi.org/10.1109/EMBC.2016.7591576.

    Google Scholar

    [23] Shang RB, Archibald R, Gelb A et al. Sparsity-based photoacoustic image reconstruction with a linear array transducer and direct measurement of the forward model. J Biomed Opt 24, 031015 (2018).

    Google Scholar

    [24] Deng ZL, Yang XQ, Gong H et al. Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy. J Appl Phys 109, 104701 (2011). doi: 10.1063/1.3585828

    CrossRef Google Scholar

    [25] Chen JH, Lin RQ, Wang HN et al. Blind-deconvolution optical-resolution photoacoustic microscopy. in vivo. Opt Express 21, 7316–7327 (2013).

    Google Scholar

    [26] Hill ER, Xia WF, Clarkson MJ et al. Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition. Biomed Opt Express 8, 68–77 (2016).

    Google Scholar

    [27] Yang CC, Lan HR, Gao F et al. Review of deep learning for photoacoustic imaging. Photoacoustics 21, 100215 (2021). doi: 10.1016/j.pacs.2020.100215

    CrossRef Google Scholar

    [28] Li ZS, Sun JS, Fan Y et al. Deep learning assisted variational Hilbert quantitative phase imaging. Opto-Electron Sci 2, 220023 (2023). doi: 10.29026/oes.2023.220023

    CrossRef Google Scholar

    [29] Saba A, Gigli C, Ayoub AB et al. Physics-informed neural networks for diffraction tomography. Adv Photonics 4, 066001 (2022).

    Google Scholar

    [30] Wu ZL, Kang I, Yao YD et al. Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID). eLight 3, 7 (2023). doi: 10.1186/s43593-022-00037-9

    CrossRef Google Scholar

    [31] Wei X, Feng T, Huang QH et al. Deep learning-powered biomedical photoacoustic imaging. Neurocomputing 573, 127207 (2024). doi: 10.1016/j.neucom.2023.127207

    CrossRef Google Scholar

    [32] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics 22, 100241 (2021).

    Google Scholar

    [33] Allman D, Reiter A, Bell MAL. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans Med Imaging 37, 1464–1477 (2018).

    Google Scholar

    [34] Wang R, Zhang ZP, Chen RY et al. Noise‐insensitive defocused signal and resolution enhancement for optical‐resolution photoacoustic microscopy via deep learning. J Biophotonics 16, e202300149 (2023). doi: 10.1002/jbio.202300149

    CrossRef Google Scholar

    [35] Zhao HX, Ke ZW, Yang F et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages. Adv Sci 8, 2003097 (2021). doi: 10.1002/advs.202003097

    CrossRef Google Scholar

    [36] Vu T, DiSpirito III A, Li DW et al. Deep image prior for undersampling high-speed photoacoustic microscopy. Photoacoustics 22, 100266 (2021). doi: 10.1016/j.pacs.2021.100266

    CrossRef Google Scholar

    [37] He D, Zhou JS, Shang XY et al. De-noising of photoacoustic microscopy images by deep learning. arXiv: 2201.04302 (2022). https://doi.org/10.48550/arXiv.2201.04302

    Google Scholar

    [38] Cheng SF, Zhou YY, Chen JB et al. High-resolution photoacoustic microscopy with deep penetration through learning. Photoacoustics 25, 100314 (2022). doi: 10.1016/j.pacs.2021.100314

    CrossRef Google Scholar

    [39] Zhang ZY, Jin HR, Zhang WW et al. Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging via deep CNN prior. Photoacoustics 30, 100484 (2023). doi: 10.1016/j.pacs.2023.100484

    CrossRef Google Scholar

    [40] Gao Y, Feng T, Qiu HX et al. 4D spectral-spatial computational photoacoustic dermoscopy. Photoacoustics 34, 100572 (2023). doi: 10.1016/j.pacs.2023.100572

    CrossRef Google Scholar

    [41] DiSpirito A, Li DW, Vu T et al. Reconstructing undersampled photoacoustic microscopy images using deep learning. IEEE Trans Med Imaging 40, 562–570 (2021). doi: 10.1109/TMI.2020.3031541

    CrossRef Google Scholar

    [42] Lu JY, Zou HH, Greenleaf JF. Biomedical ultrasound beam forming. Ultrasound Med Biol 20, 403–428 (1994). doi: 10.1016/0301-5629(94)90097-3

    CrossRef Google Scholar

    [43] Lin HN, Cheng JX. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3, 6 (2023). doi: 10.1186/s43593-022-00038-8

    CrossRef Google Scholar

    [44] Zhang ZY, Jin HR, Zheng ZS et al. Deep and domain transfer learning aided photoacoustic microscopy: acoustic resolution to optical resolution. IEEE Trans Med Imaging 41, 3636–3648 (2022). doi: 10.1109/TMI.2022.3192072

    CrossRef Google Scholar

    [45] Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285, 2016

    Google Scholar

    [46] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Proceedings of the 26th International Conference on Neural Information Processing Systems 1097–1105 (Curran Associates Inc. , 2012).

    Google Scholar

    [47] He KM, Zhang XY, Ren SQ et al. Deep residual learning for image recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016); http://doi.org/10.1109/CVPR.2016.90.

    Google Scholar

    [48] Cao Y, Xu JR, Lin S et al. GCNet: non-local networks meet squeeze-excitation networks and beyond. In Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshops 1971–1980 (IEEE, 2019); http://doi.org/10.1109/ICCVW.2019.00246.

    Google Scholar

    [49] Kim T, Oh J, Kim N et al. Comparing Kullback-Leibler divergence and mean squared error loss in knowledge distillation. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence 2628–2635 (ijcai. org, 2021).

    Google Scholar

    [50] Yang QS, Yan PK, Zhang YB et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37, 1348–1357 (2018). doi: 10.1109/TMI.2018.2827462

    CrossRef Google Scholar

    [51] Wang ZY, Zhou YF, Hu S. Sparse coding-enabled low-fluence multi-parametric photoacoustic microscopy. IEEE Trans Med Imaging 41, 805–814 (2022). doi: 10.1109/TMI.2021.3124124

    CrossRef Google Scholar

    [52] Zhang YC, Chen JB, Zhang J et al. Super‐low‐dose functional and molecular photoacoustic microscopy. Adv Sci 10, 2302486 (2023). doi: 10.1002/advs.202302486

    CrossRef Google Scholar

    [53] Siregar S, Nagaoka R, Haq IU et al. Non local means denoising in photoacoustic imaging. Jpn J Appl Phys 57, 07LB06 (2018). doi: 10.7567/JJAP.57.07LB06

    CrossRef Google Scholar

    [54] Frangakis AS, Hegerl R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135, 239–250 (2001). doi: 10.1006/jsbi.2001.4406

    CrossRef Google Scholar

    [55] Gauthier J. Conditional generative adversarial nets forconvolu-tional face generation. Class project for Stanford CS231N: con-volutional neural networks for visual recognition. WinterSemester 2014, 2 (2014).

    Google Scholar

    [56] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention 234–241 (Springer, 2015); http://doi.org/10.1007/978-3-319-24574-4_28.

    Google Scholar

    [57] Ma HG, Yu YS, Zhu YH et al. Monitoring of microvascular calcification by time-resolved photoacoustic microscopy. Photoacoustics 41, 100664 (2025). doi: 10.1016/j.pacs.2024.100664

    CrossRef Google Scholar

  • Supplementary information for Enhanced photoacoustic microscopy with physics-embedded degeneration learning
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint