Citation: | Liu ML, Wei ZQ, Zhu HT et al. Soliton microcombs in optical microresonators with perfect spectral envelopes. Opto-Electron Adv 8, 240257 (2025). doi: 10.29026/oea.2025.240257 |
[1] | Sun Y, Wu JY, Tan MX et al. Applications of optical microcombs. Adv Opt Photonics 15, 86–175 (2023). doi: 10.1364/AOP.470264 |
[2] | Diddams SA, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020). doi: 10.1126/science.aay3676 |
[3] | Drake TE, Briles TC, Stone JR et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys Rev X 9, 031023 (2019). |
[4] | Geng Y, Zhou H, Han XJ et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat Commun 13, 1070 (2022). doi: 10.1038/s41467-022-28712-y |
[5] | Stern L, Stone JR, Kang SB et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci Adv 6, eaax6230 (2020). doi: 10.1126/sciadv.aax6230 |
[6] | Bao CY, Yuan ZQ, Wu L et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat Commun 12, 6573 (2021). doi: 10.1038/s41467-021-26958-6 |
[7] | Dang LY, Huang LG, Shi LL et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv 6, 210149 (2023). doi: 10.29026/oea.2023.210149 |
[8] | Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018). doi: 10.1126/science.aao3924 |
[9] | Wang JD, Lu ZZ, Wang WQ et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res 8, 1964–1972 (2020). doi: 10.1364/PRJ.408923 |
[10] | Camenzind SL, Fricke JF, Kellner J et al. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt Express 30, 37245–37260 (2022). doi: 10.1364/OE.469415 |
[11] | Guidry MA, Lukin DM, Yang KY et al. Quantum optics of soliton microcombs. Nat Photonics 16, 52–58 (2022). doi: 10.1038/s41566-021-00901-z |
[12] | Chen LW, Zhou Y, Li Y et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215 |
[13] | Bao CY, Xuan Y, Leaird DE et al. Spatial mode-interaction induced single soliton generation in microresonators. Optica 4, 1011–1015 (2017). doi: 10.1364/OPTICA.4.001011 |
[14] | Zhai YR, Liu JC, Jia LH et al. Dissipative Kerr soliton formation in dual-mode interaction Si3N4 microresonators. APL Photonics 9, 101304 (2024). doi: 10.1063/5.0235026 |
[15] | Liu KW, Yao SY, Yang CX. Raman pure quartic solitons in Kerr microresonators. Opt Lett 46, 993–996 (2021). doi: 10.1364/OL.415434 |
[16] | Xiang C, Liu JQ, Guo J et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021). doi: 10.1126/science.abh2076 |
[17] | Ma JY, Xiao LF, Gu JX et al. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Res 7, 573–578 (2019). doi: 10.1364/PRJ.7.000573 |
[18] | Shu FJ, Zhang PJ, Qian YJ et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Sci China Phys Mech Astron 63, 254211 (2020). doi: 10.1007/s11433-019-1464-8 |
[19] | Chen DY, Kovach A, Shen XQ et al. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics 4, 2376–2381 (2017). doi: 10.1021/acsphotonics.7b00752 |
[20] | Qu MF, Li CH, Liu KQ et al. Dynamic process of soliton generation in CaF2 crystalline whispering gallery mode resonators with negative TO effects. Opt Express 32, 42846–42855 (2024). doi: 10.1364/OE.537846 |
[21] | Wang H, Duan B, Wang K et al. Direct tuning of soliton detuning in an ultrahigh-Q MgF2 crystalline resonator. Nanophotonics 12, 3757–3765 (2023). doi: 10.1515/nanoph-2023-0325 |
[22] | Liu XW, Sun CZ, Xiong B et al. Integrated high-Q crystalline ALN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics 5, 1943–1950 (2018). doi: 10.1021/acsphotonics.7b01254 |
[23] | Yao SY, Liu KW, Yang CX. Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities. Opt Express 29, 8312–8322 (2021). doi: 10.1364/OE.418538 |
[24] | Chang L, Xie WQ, Shu HW et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat Commun 11, 1331 (2020). doi: 10.1038/s41467-020-15005-5 |
[25] | Melchert O, Kinnewig S, Dencker F et al. Soliton compression and supercontinuum spectra in nonlinear diamond photonics. Diam Relat Mater 136, 109939 (2023). doi: 10.1016/j.diamond.2023.109939 |
[26] | Miao RL, Zhang CX, Zheng X et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Res 10, 1859–1867 (2022). doi: 10.1364/PRJ.458472 |
[27] | Guo HR, Karpov M, Lucas E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys 13, 94–102 (2017). doi: 10.1038/nphys3893 |
[28] | Brasch V, Geiselmann M, Pfeiffer MHP et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt Express 24, 29312–29320 (2016). doi: 10.1364/OE.24.029312 |
[29] | Li J, Wan S, Peng JL et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator. Opt Express 30, 13690–13698 (2022). doi: 10.1364/OE.450100 |
[30] | Ji XR, Liu JQ, He JJ et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun Phys 5, 84 (2022). doi: 10.1038/s42005-022-00851-0 |
[31] | Zhou H, Geng Y, Cui WW et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci Appl 8, 50 (2019). doi: 10.1038/s41377-019-0161-y |
[32] | Wang XY, Qiu XK, Liu ML et al. Flat soliton microcomb source. Opto-Electron Sci 2, 230024 (2023). doi: 10.29026/oes.2023.230024 |
[33] | Herr T, Brasch V, Jost JD et al. Temporal solitons in optical microresonators. Nat Photonics 8, 145–152 (2014). doi: 10.1038/nphoton.2013.343 |
[34] | Jiang SS, Guo CL, Fu HY et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system. Opt Express 28, 38304–38316 (2020). doi: 10.1364/OE.412157 |
[35] | Yu MJ, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl 9, 9 (2020). doi: 10.1038/s41377-020-0246-7 |
[36] | Brasch V, Geiselmann M, Herr T et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016). doi: 10.1126/science.aad4811 |
[37] | Gong Z, Liu XW, Xu YT et al. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020). doi: 10.1364/OPTICA.400994 |
[38] | Wang CL, Li J, Yi AL et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci Appl 11, 341 (2022). doi: 10.1038/s41377-022-01042-w |
[39] | Wu W, Sun QB, Wang Y et al. Mid-infrared broadband optical frequency comb generated in MgF2 resonators. Photonics Res 10, 1931–1936 (2022). doi: 10.1364/PRJ.459478 |
[40] | Wang FX, Wang WQ, Niu R et al. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon Rev 14, 1900190 (2020). doi: 10.1002/lpor.201900190 |
[41] | Riemensberger J, Lukashchuk A, Karpov M et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020). doi: 10.1038/s41586-020-2239-3 |
[42] | Stone JR, Briles TC, Drake TE et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys Rev Lett 121, 063902 (2018). doi: 10.1103/PhysRevLett.121.063902 |
[43] | Zheng HM, Sun W, Ding XX et al. Programmable access to microresonator solitons with modulational sideband heating. APL Photonics 8, 126110 (2023). doi: 10.1063/5.0173243 |
[44] | Moille G, Chang L, Xie WQ et al. Dissipative Kerr solitons in a III-V microresonator. Laser Photon Rev 14, 2000022 (2020). doi: 10.1002/lpor.202000022 |
[45] | Zhao BL, Wang LR, Sun QB et al. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl Phys Express 13, 032009 (2020). doi: 10.35848/1882-0786/ab7481 |
[46] | Fan WC, Lu ZZ, Li W et al. Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator. IEEE Photonics J 11, 6603407 (2019). |
[47] | Karpov M, Pfeiffer MHP, Guo HR et al. Dynamics of soliton crystals in optical microresonators. Nat Phys 15, 1071–1077 (2019). doi: 10.1038/s41567-019-0635-0 |
[48] | He Y, Ling JW, Li MX et al. Perfect soliton crystals on demand. Laser Photon Rev 14, 1900339 (2020). doi: 10.1002/lpor.201900339 |
[49] | Suh MG, Yi X, Lai YH et al. Searching for exoplanets using a microresonator astrocomb. Nat Photonics 13, 25–30 (2019). doi: 10.1038/s41566-018-0312-3 |
[50] | Kim C, Ye CC, Zheng Y et al. Design and fabrication of AlGaAs-on-insulator microring resonators for nonlinear photonics. IEEE J Sel Top Quantum Electron 29, 5900214 (2023). |
[51] | Liu H, Wang WT, Yang JH et al. Observation of deterministic double dissipative-Kerr-soliton generation with avoided mode crossing. Phys Rev Res 5, 013172 (2023). doi: 10.1103/PhysRevResearch.5.013172 |
[52] | Bao CY, Xuan Y, Jaramillo-Villegas JA et al. Direct soliton generation in microresonators. Opt Lett 42, 2519–2522 (2017). doi: 10.1364/OL.42.002519 |
[53] | Lu ZZ, Wang WQ, Zhang WF et al. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]. Opt Mater Express 8, 2662–2669 (2018). doi: 10.1364/OME.8.002662 |
[54] | Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica 3, 414–426 (2016). doi: 10.1364/OPTICA.3.000414 |
[55] | Piccoli G, Sanna M, Borghi M et al. Silicon oxynitride platform for linear and nonlinear photonics at NIR wavelengths. Opt Mater Express 12, 3551–3562 (2022). doi: 10.1364/OME.463940 |
[56] | Lu ZZ, Wang WQ, Zhang WF et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv 9, 025314 (2019). doi: 10.1063/1.5080128 |
[57] | Wang WQ, Zhang WF, Chu ST et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics 4, 1677–1683 (2017). doi: 10.1021/acsphotonics.7b00129 |
[58] | Chen LK, Xiao YF. On-chip lithium niobate microresonators for photonics applications. Sci China Phys Mech Astron 63, 224231 (2020). doi: 10.1007/s11433-019-9453-3 |
[59] | Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7 |
[60] | Wang WQ, Lu ZZ, Zhang WF et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett 43, 2002–2005 (2018). doi: 10.1364/OL.43.002002 |
[61] | Li ZD, Xu YQ, Shamailov S et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat Photonics 18, 46–53 (2024). doi: 10.1038/s41566-023-01303-z |
The influences of thermal effects on soliton formation and auxiliary laser assisted tuning method. (a) For strong thermal effects of ζ = −1 × 104 (Ws)−1, intracavity energy evolution reflects soliton annihilation or in chaotic regime. Different color represents distinct microcomb routes and determined by intracavity energy instability. (b) For weak thermal effect of ζ = −5 × 103 (Ws)−1 solitons can always survive in all 20 scans. Calculated temporal profile (c-i) and spectral profile (c-ii) of chaotic state with only one pump. (c-iii) Schematic diagram of chaotic state with only one pump. Calculated temporal profile (d-i) and spectral profile (d-ii) of two solitons state with heat balance scheme. (d-iii) Schematic diagram of two solitons state with heat balance scheme.
Experimental setup and single perfect soliton. (a) Physical drawing of a microresonator. (b) Scanning electron microscope image of the microresonator. (c) Experimental setup for perfect soliton generation. ECDL, external cavity diode laser; EDFA, erbium-doped fiber amplifier; FPC, fiber polarization controller; Cir, circulator; TEC, thermoelectric controller; OSA, optical spectrum analyzer. The zoom in of the chip shows a scanning-electron micrograph of the waveguide cross-section. (d) Low-noise single soliton state (blue curve) with a sech2 fitting spectral profile (red dashed curve). (e) Microwave beat note of the photo-detected soliton.
(a–c) Experimentally measured spectra for 1-, 2- and 4-solion states, respectively. (d–f) Calculated different soliton states. Insets shows the corresponding temporal profile where oscillation is avoided.
(a–d) Experimentally measured spectra of different two solions states.
(a-d) Calculated spectra of different two-solion states. Insets show corresponding temporal profile.