Chen JY, Eul T, Lyu L, Li YL, Hu XY et al. Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission. Opto-Electron Sci 1, 210011 (2022). doi: 10.29026/oes.2022.210011
Citation: Chen JY, Eul T, Lyu L, Li YL, Hu XY et al. Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission. Opto-Electron Sci 1, 210011 (2022). doi: 10.29026/oes.2022.210011

Original Article Open Access

Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission

More Information
  • The two-dimensional electron gas (2DEG) generated at the LaAlO3/SrTiO3 interface has been in the focus of oxides research since its first discovery. Although oxygen vacancies play an important role in the generation of the insulator-to-metal transition of the SrTiO3 bare surface, their contribution at the LaAlO3/SrTiO3 interface remains unclear. In this work, we investigated a LaAlO3/SrTiO3 heterostructure with regional distribution of defect-based localized polar sites at the interface. Using static and time-resolved threshold photoemission electron microscopy, we prove that oxygen vacancies are induced near those polar sites, resulting in the increase of carrier density of the 2DEG states. In addition, oxygen-related surface states were uncovered, which we attributed to the release of lattice oxygen during the formation of oxygen vacancies. Such effects are mainly found spatially located around the defect sites at the buried interface, while other regions remain unaffected. Our results confirm that the itinerant electrons induced by oxygen vacancies can coexist with the charge transfer mechanism in the LaAlO3/SrTiO3 heterostructure, together leading to the formation of the metallic interface. These observations provide fundamental insights into the nature of LaAlO3/SrTiO3 interface based 2DEG and unique perspectives for potential applications.
  • 加载中
  • [1] Ohtomo A, Hwang HY. A high-mobility electron gas at the LaAlO3/SrtiO3 heterointerface. Nature 427, 423–426 (2004). doi: 10.1038/nature02308

    CrossRef Google Scholar

    [2] Lee JS, Xie YW, Sato HK, Bell C, Hikita Y et al. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat Mater 12, 703–706 (2013). doi: 10.1038/nmat3674

    CrossRef Google Scholar

    [3] Ohshima R, Ando Y, Matsuzaki K, Susaki T, Weiler M et al. Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface. Nat Mater 16, 609–614 (2017). doi: 10.1038/nmat4857

    CrossRef Google Scholar

    [4] Kalisky B, Bert JA, Klopfer BB, Bell C, Sato HK et al. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nat Commun 3, 922 (2012). doi: 10.1038/ncomms1931

    CrossRef Google Scholar

    [5] Salman Z, Ofer O, Radovic M, Hao H, Shalom MB et al. Nature of weak magnetism in SrTiO3 /LaAlO3 multilayers. Phys Rev Lett 109, 257207 (2012). doi: 10.1103/PhysRevLett.109.257207

    CrossRef Google Scholar

    [6] Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006). doi: 10.1126/science.1131091

    CrossRef Google Scholar

    [7] Nemati A, Wang Q, Ang NSS, Wang WD, Hong MH et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron Adv 4, 200088 (2021). doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [8] Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007). doi: 10.1126/science.1146006

    CrossRef Google Scholar

    [9] Caviglia AD, Gariglio S, Reyren N, Jaccard D, Schneider T et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008). doi: 10.1038/nature07576

    CrossRef Google Scholar

    [10] Nakagawa N, Hwang HY, Muller DA. Why some interfaces cannot be sharp. Nat Mater 5, 204–209 (2006). doi: 10.1038/nmat1569

    CrossRef Google Scholar

    [11] Stengel M, Vanderbilt D. Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys Rev B 80, 241103(R) (2009).

    Google Scholar

    [12] Dudy L, Sing M, Scheiderer P, Denlinger JD, Schütz P et al. In situ control of separate electronic phases on SrTiO3 surfaces by oxygen dosing. Adv Mater 28, 7443–7449 (2016). doi: 10.1002/adma.201600046

    CrossRef Google Scholar

    [13] Zhong ZC, Xu PX, Kelly PJ. Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces. Phys Rev B 82, 165127 (2010). doi: 10.1103/PhysRevB.82.165127

    CrossRef Google Scholar

    [14] Li Y, Phattalung SN, Limpijumnong S, Kim J, Yu J. Formation of oxygen vacancies and charge carriers induced in the n-type interface of a LaAlO3 overlayer on SrTiO3 (001). Phys Rev B 84, 245307 (2011). doi: 10.1103/PhysRevB.84.245307

    CrossRef Google Scholar

    [15] Lee D, Lu H, Gu Y, Choi SY, Li SD et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015). doi: 10.1126/science.aaa6442

    CrossRef Google Scholar

    [16] Lu HD, Lee D, Klyukin K, Tao LL, Wang B et al. Tunneling hot spots in ferroelectric SrTiO3. Nano Lett 18, 491–497 (2018). doi: 10.1021/acs.nanolett.7b04444

    CrossRef Google Scholar

    [17] Chen JY, Liu W, Eul T, Chen MJ, Hu XY et al. Engineering of electron confinement through defect-based localized polarization on SrTiO3 surface. Adv Electron Mater 7, 2000968 (2021). doi: 10.1002/aelm.202000968

    CrossRef Google Scholar

    [18] Taniuchi T, Motoyui Y, Morozumi K, Rödel TC, Fortuna F et al. Imaging of room-temperature ferromagnetic nano-domains at the surface of a non-magnetic oxide. Nat Commun 7, 11781 (2016). doi: 10.1038/ncomms11781

    CrossRef Google Scholar

    [19] Gonzalez S, Mathieu C, Copie O, Feyer V, Schneider CM et al. Room temperature 2D electron gas at the (001)-SrTiO3 surface. Appl Phys Lett 111, 181601 (2017). doi: 10.1063/1.5001222

    CrossRef Google Scholar

    [20] Motoyui Y, Taniuchi T, Scheiderer P, Lee JN, Gabel J et al. Imaging the formation of ferromagnetic domains at the LaAlO3/SrTiO3 interface. J Phys Soc Jpn 88, 034717 (2019). doi: 10.7566/JPSJ.88.034717

    CrossRef Google Scholar

    [21] Susaki T, Makishima A, Hosono H. Work function engineering via LaAlO3/SrTiO3 polar interfaces. Phys Rev B 84, 115456 (2011). doi: 10.1103/PhysRevB.84.115456

    CrossRef Google Scholar

    [22] Fetzer R, Stadtmüller R, Ohdaira Y, Naganuma H, Oogane M et al. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy. Sci Rep 5, 8537 (2014).

    Google Scholar

    [23] Lin C, Demkov AA. Electron correlation in oxygen vacancy in SrTiO3. Phys Rev Lett 111, 217601 (2013). doi: 10.1103/PhysRevLett.111.217601

    CrossRef Google Scholar

    [24] Lin C, Mitra C, Demkov AA. Orbital ordering under reduced symmetry in transition metal perovskites: oxygen vacancy in SrTiO3. Phys Rev B 86, 161102(R) (2012).

    Google Scholar

    [25] Choi M, Oba F, Tanaka I. Role of Ti antisitelike defects in SrTiO3. Phys Rev Lett 103, 185502 (2009). doi: 10.1103/PhysRevLett.103.185502

    CrossRef Google Scholar

    [26] Klyukin K, Alexandrov V. Effect of intrinsic point defects on ferroelectric polarization behavior of SrTiO3. Phys Rev B 95, 035301 (2017). doi: 10.1103/PhysRevB.95.035301

    CrossRef Google Scholar

    [27] Lin C, Demkov AA. Electron correlation in oxygen vacancy in SrTiO3. Phys Rev Lett 111, 217601 (2013). doi: 10.1103/PhysRevLett.111.217601

    CrossRef Google Scholar

    [28] Hill DM, Meyer III HM, Weaver JH. Y, Ba, Cu, and Ti interface reactions with SrTiO3 (100) surfaces. J Appl Phys 65, 4943–4950 (1989). doi: 10.1063/1.343211

    CrossRef Google Scholar

    [29] Chen YZ, Pryds N, Kleibeuker JE, Koster G, Sun JR et al. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett 11, 3774–3778 (2011). doi: 10.1021/nl201821j

    CrossRef Google Scholar

    [30] Gupta A. Gas-phase oxidation chemistry during pulsed laser deposition of YBa2Cu3O7-δ films. J Appl Phys 73, 7877–7886 (1993). doi: 10.1063/1.353939

    CrossRef Google Scholar

    [31] Rödel TC, Fortuna F, Bertran F, Gabay M, Rozenberg MJ et al. Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO2 anatase using light. Phys Rev B 92, 041106(R) (2015).

    Google Scholar

    [32] Suwanwong S, Eknapakul T, Rattanachai Y, Masingboon C, Rattanasuporn S et al. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO3 (001). Appl Surf Sci 355, 210–212 (2015). doi: 10.1016/j.apsusc.2015.06.171

    CrossRef Google Scholar

    [33] Yu LP, Zunger A. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces. Nat Commun 5, 5118 (2014). doi: 10.1038/ncomms6118

    CrossRef Google Scholar

    [34] Zhang LX, Zhou XF, Wang HT, Xu JJ, Li JB et al. Origin of insulating behavior of the p-type LaAlO3/SrTiO3 interface: polarization-induced asymmetric distribution of oxygen vacancies. Phys Rev B 82, 125412 (2010). doi: 10.1103/PhysRevB.82.125412

    CrossRef Google Scholar

    [35] Ertekin E, Srinivasan V, Ravichandran J, Rossen PB, Siemons W et al. Interplay between intrinsic defects, doping, and free carrier concentration in SrTiO3 thin films. Phys Rev B 85, 195460 (2012). doi: 10.1103/PhysRevB.85.195460

    CrossRef Google Scholar

    [36] Ohnishi T, Shibuya K, Yamamoto T, Lippmaa M. Defects and transport in complex oxide thin films. J Appl Phys 103, 103703 (2008). doi: 10.1063/1.2921972

    CrossRef Google Scholar

    [37] Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F et al. ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180, 2582–2615 (2009). doi: 10.1016/j.cpc.2009.07.007

    CrossRef Google Scholar

    [38] Gonze, Beuken JM, Caracas R, Detraux F, Fuchs MX et al. First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25, 478–492 (2002). doi: 10.1016/S0927-0256(02)00325-7

    CrossRef Google Scholar

    [39] Bungaro C, Rabe KM. Epitaxially strained [001]-(PbTiO3)1(PbZrO3)1 superlattice and PbTiO3 from first principles. Phys Rev B 69, 184101 (2004). doi: 10.1103/PhysRevB.69.184101

    CrossRef Google Scholar

    [40] Gemming S, Seifert G. SrTiO3(001)/LaAlO3(001) multilayers: a density-functional investigation. Acta Mater 54, 4299–4306 (2006). doi: 10.1016/j.actamat.2006.05.023

    CrossRef Google Scholar

  • Supplementary information for Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint