光电工程  2019, Vol. 46 Issue (2): 180365      DOI: 10.12086/oee.2019.180365     
宽光谱大面积多阶梯光场光谱感光仪
李超洋1 , 黄元申1,2 , 盛斌1 , 庄松林1,2     
1. 上海理工大学光电信息与计算机工程学院,上海 200093;
2. 上海光学仪器研究所,上海 200093
摘要:研制了一种新型光谱感光仪,其特点是宽光谱(340 nm~900 nm),大曝光面(202 mm×90.5 mm),且面上具有多阶梯光强;制备具有18级光密度值的高精密阶梯光楔板,每个台阶的光密度值误差不大于0.01;根据光源的光谱特性镀制滤光膜,消除光栅二级光谱。自动控制采集系统采用LabVIEW与PLC一体机开发,水平方向采用光栅位移传感器构成闭环控制,波长定位偏差小于0.05 nm;竖直方向采用线性补偿方法,高度位置偏差小于0.05 mm。仪器能够自动测量光楔板上不同波长不同光强区域的单位面积光功率,用快门控制曝光时间,在宽光谱范围内对感光材料进行一次曝光。在显影定影后,用光密度计测量其光密度值,根据国标(GB10557-89)绘制出感光材料某一确定光密度值的光谱灵敏度曲线。
关键词光谱灵敏度    光密度    光谱    光强    阶梯光楔板    
Spectrosensitometer with wide spectrum, large scale and multistep optical field
Li Chaoyang1, Huang Yuanshen1,2, Sheng Bin1, Zhuang Songlin1,2     
1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. Shanghai Institute of Optical Instruments, Shanghai 200093, China
Abstract: A new type of spectrosensitometer has been developed, which is characterized by a wide spectrum range of 340 nm ~ 900 nm and a large exposed area of 202 mm × 90.5 mm with multi-step light intensities on it. The optical density value error of each step on the 18-step wedge with high precision is not greater than 0.01. The film filter evaporated according to the spectral characteristic of the light source can eliminate the secondary spectrum of grating. The automatic control acquisition system is developed by LabVIEW and all-in-one PLC with HMI. In the horizontal direction, the grating displacement sensor is adopted to form the closed-loop control, and the wavelength positioning deviation is less than 0.05 nm. Linear compensation method is adopted in the vertical direction with a height deviation of less than 0.05 mm. The spectrosensitometer automatically measures the optical power per unit area of lights with different wavelengths and light intensities on the step wedge. The shutter controls exposure time. Photosensitive materials are once exposed within the scope of the wide spectrum. After being developed and fixed, the optical density value can be measured by densitometer. The spectral sensitivity curve of a photosensitive material with a certain optical density value can be drawn according to the national standard (GB10557-89).
Keywords: spectral sensitivity    optical density    spectrum    light intensity    step wedge    

1 引言

自1839年银板照相技术出现之后,感光材料发展迅速,已经成为种类齐全、技术成熟的材料体系[1]。在摄影领域,虽然数码相机基本取代了胶片相机,但是,在航空摄影领域,由于胶片的宽容度大于CCD或者COMS,对于亮度反差大的景物,胶片可以实现一次拍摄;并且胶片尺寸可以做得比CCD和COMS大许多,因此可以拍摄出更大幅面的地面景物;在无人机采用数码相机进行高速低空飞行拍摄高分辨率图像的情况下,由于传输距离远,信号干扰大,因此庞大的图像数据不能实现实时传输,必须返回处理,而在同样条件下采用胶片相机拍摄,图像的信息丰富度远优于数码摄像机。在核物理研究领域,高能粒子会对CCD或COMS造成损伤,而感光材料可以用于α粒子和β粒子示踪轨迹的研究。此外,在医学诊断领域中也离不开胶片的使用,如在医用X射线诊断领域,CR系统中可重复使用的IP板,医用荧光缩影胶片,间接摄影胶片等。并且感光材料具有感光速度快,成本低、分辨率高等优点[2],因此在全息成像、防伪和金属探伤等领域依然发挥着不可代替的作用。

光谱灵敏度是感光材料最重要的特性指标。光谱灵敏度表示感光材料对不同波长辐射的照相效应。即产生最小光密度以上某一确定密度所需各单色光能量(单位:J/m2)的倒数。根据国标GB10557-89,光谱灵敏度的计算公式为

$ {S_\lambda } = \frac{1}{{{H_\lambda }}}, $ (1)

其中:${S_\lambda }$代表光谱灵敏度,${H_\lambda }$为波长λ处获得密度${D_\lambda }$所需接收的能量,单位是J/m2[3]

用于测定感光材料光谱灵敏度曲线的仪器有多种,苏联ИCΠ-73型光谱感光仪,使用棱镜作为分光元件,效率和分辨率很低;美国莫里森光谱感光仪以透射光栅为分光元件,但一次只能拍摄10条光谱[4-5]。1988年Cogley R M,Knight S E等采用氙灯、单色仪、滤光片、两维位移平台等器件搭建光谱感光仪测定光刻胶的光谱灵敏度,仪器光谱范围为200 nm~600 nm,采用单波长曝光,具有测定时间长、效率低、光谱间隔大的缺点,并且没有阶梯光楔[6]。1996年王弘钰采用汞灯、氙灯组合光源,滤光片、单色仪以及12级阶梯光楔为核心器件研发光谱感光仪,光谱范围350 nm~780 nm,使用滤光片对感光材料进行分波段、单波长多次曝光,波长扫描间隔始终固定为10 nm[7]。目前国内外普遍采用改造的摄谱仪进行测定,在摄谱仪的入射狭缝处放置5 mm×12 mm的阶梯光楔,由于尺寸太小并且有8级阶梯,在光楔加工时会造成部分级次光密度分布不均匀,经光学系统放大后导致光谱曝光面上光强分布严重不均匀。此外,摄谱仪采用光栅分光,存在二级光谱重叠现象,需要在入射狭缝处安置滤光片进行二次曝光;并且改造的摄谱仪在紫外波段光能量太低,曝光效果差。再之,经摄谱仪改造的光谱感光仪不具有测量光谱面上不同波长单位面积光功率的功能,无法绘制光谱灵敏度曲线,只能定性比较不同感光材料在某一波段内的光谱灵敏度特性[8]

本文研制的光谱感光仪采用尺寸为220 mm×100 mm的18级阶梯光楔对202 mm×90.5 mm光谱面进行光强调制,阶梯光楔每级光密度值的偏差不大于0.01;由于光源采用卤钨灯,在阶梯光楔板上波长为600 nm~900 nm波段范围对应的空间区域镀制截止波长为450 nm的高通滤光膜消除二级光谱,实现了一张感光材料一次完成340 nm~900 nm波段范围曝光;并且,仪器使用500 W卤钨灯和110 mm×110 mm的闪耀光栅提高紫外波段光强,使用高灵敏度500 pW探测器测量光谱面上不同波长单位面积光功率,实现了定量测量感光材料光谱灵敏度特性。最后,软件输出感光材料在曝光时间内接收的不同波长光能量(单位:J/m2)倒数,即光谱灵敏度。

2 光学系统设计

图 1为系统的光路图,光源L为500 W的卤钨灯,光束经聚焦透镜至狭缝S上,D为电子快门,再发散经平面反射镜R至准直球面反射镜M,反射出的平面波以25°角入射到闪耀光栅G上,充满光栅表面,经光栅G衍射出的不同波长的平行光以不同的入射角入射至聚焦柱面反射镜C上且充满,最后聚焦在柱面反射镜C的焦平面F上,得到一个宽光谱大面积的感光光谱面。光谱面的几何尺寸为202 mm(水平方向)×90.5 mm(竖直方向),水平方向为光谱展开方向,其波段范围为340 nm~900 nm。核心分光元件光栅G为自制大面积闪耀反射机械刻划光栅,其几何尺寸为10 mm×110 mm,考虑到仪器结构大小、光谱能量分布和光栅加工难度,设计的光栅刻线数为350 l/mm,槽形角为6°;大柱面反射镜的曲率半径为1643.59 mm,外形尺寸为390 mm×110 mm[9],光学系统设计参数如表 1所示。

图 1 仪器的光路结构图。L:光源;S:狭缝;R:平面反射镜;M:凹面反射镜;G:闪耀光栅;C:柱面反射镜;D:电子快门; F:成像面 Fig. 1 The optical diagram of the instrument. L: Source; S: Slit; R: Reflector; M: Concave mirror; G: Grating; C: Cylindrical; D: Electronic shutter; F: Focal plane

表 1 光学系统设计参数 Table 1 Optical system design parameters
尺寸 倾斜角度/(°) 曲率半径/mm 光栅线数/(l/mm) 光束入射角度/(°) 槽形角/(°)
平面反射镜 62 mm×62 mm×6 mm 45.00
凹面反射镜 ϕ148 mm×25 mm 17.95 640
闪耀光栅 110 mm×110 mm×12 mm 10.94 350 25 6
柱面反射镜 390 mm×110 mm×50 mm 5.90 1643.59

利用低压汞灯在可见光波段的4条特征谱546.07 nm,435.83 nm,576.96 nm和579.07 nm,测出实际光谱面的平均线色散率为2.78 nm/mm,如图 2

图 2 汞灯光谱图 Fig. 2 The mercury lamp spectrogram
3 18级阶梯光楔板设计与制作

研制了一块具有18级光密度的阶梯光楔板,外形尺寸为220 mm×100 mm,如图 3所示。

图 3 阶梯光楔板 Fig. 3 The step wedge

阶梯光楔采用镀膜结合离子束蚀刻技术制备,兼顾光谱展开对光密度的影响,使用相对波长中性度较好的镍铬合金材料[10-16],自制夹具实现分层累积镀制每一阶梯,根据实测光密度值,对阶梯镀膜面进行增减厚度的微量控制,阶梯光楔的18级光密度值从下至上成等差递增,分别为0.00,0.15,0.30,…,2.55,每个阶梯光密度值误差不大于0.01,几何尺寸为210 mm×4.5 mm;采用精密照相刻度技术,根据光谱面的平均线色散率,在阶梯光楔底部水平方向上刻制反映波长位置的刻线和镜像波长数字,并在波长546 nm的位置上刻一根长线,用于光谱面波长标定;在左下角和右上角刻有两组长直角线,用于被测感光材料在密度计上的定位用。

阶梯光楔板安置在光谱面上,如图 4所示。采用低压汞灯对光谱进行标定。以低压汞灯为光源,微调光路和阶梯光楔的位置,使汞灯的546 nm光谱线与滤波片上546 nm波长的长刻线重合。

图 4 安装有阶梯光楔板的卤钨灯光谱面 Fig. 4 The tungsten halogen lamp spectrogram with the step wedge

根据实测500 W卤钨灯的光谱响应曲线,330 nm以下波长的光能量趋于零。结合光栅二级光谱重叠特点,在阶梯光楔板上波长为600 nm~900 nm波段范围对应的空间区域镀制滤光膜,截止波长为450 nm。实验发现二级光谱能量约为重叠区一级光谱的三分之一,镀制高通滤光膜后有效地虑除了二级光谱的影响。采用中科院理化技术研究所研制的短波段敏感的干板进行测试,如图 5为未滤除二级光谱的感光干板的曝光照片,在一级光谱的680 nm~890 nm范围内叠加有二级光谱中的短波,重叠的短波长范围是二级光谱340 nm~445 nm。图 6为滤除二级光谱的感光干板的曝光照片,照片中与一级光谱叠加的二级短波光谱完全被滤除。

图 5 未滤除二级光谱的感光干板的曝光照片 Fig. 5 The exposure result of photographic plate with secondary spectrum

图 6 滤除二级光谱的感光干板的曝光照片 Fig. 6 The exposure result of photographic plate without secondary spectrum
4 谱面定位和功率密度测量系统的实现

谱面定位和功率密度测量系统的上位机软件采用LabVIEW编写,使用RS-485接口和Modbus协议保证上位机与下位机之间通信数据的可靠,上位机软件完成对整个设备的控制,数据测量,以及数据处理。下位机采用PLC一体机实现[17-19]。上位机通过发送指令给下位机,来控制水平与竖直滚珠丝杠副在光谱面上做“S”型运动,带动光功率计探头完成对光谱面上单位面积光功率的测量。光功率计由THORLABS的功率计PM100USB、带有1 mm×4 mm光阑的光功率探头S130VC构成。光谱感光仪系统框图如图 7所示。为保证扫描测量时定位的精度,在水平方向上由滚珠丝杠副和光栅尺实现闭环控制,同时采用逐次逼近算法,确保在水平方向上的波长定位误差控制在0.05 nm以下,图 8为水平方向定位闭环控制算法。

图 7 光谱感光仪系统框图 Fig. 7 The system block diagram of spectrosensitometer

图 8 水平方向定位闭环控制算法 Fig. 8 Closed-loop control algorithm for horizontal position

在竖直方向上同样采用滚珠杠副作为位移装置,由于滚珠丝杠副轴向间隙的存在,会导致固定于滑块上的光功率计探头在上下往返运动中运动范围的上移,经分析之后采用线性补偿进行修正[20-21]图 9中的9(a),9(b)分别是补偿之后以波长采样3 nm和10 nm为例,运动范围上边界实际位置与上边界理论位置偏差以及运动范围下边界实际位置与下边界理论位置偏差,其误差不大于0.05 mm。

图 9 竖直扫描区域的上下边界位置偏差。(a)波长采样间隔为3 nm;(b)波长采样间隔为10 nm Fig. 9 The error of vertical scan area at the upper and lower boundaries. (a) The wavelength sampling is with an interval of 3 nm; (b) The wavelength sampling is with an interval of 10 nm
5 光谱灵敏度测量原理

系统的采样波长间隔有三种模式,分别为3 nm、5 nm和10 nm。对感光材料曝光前,首先采集感光面上不同波长的18个不同强度的单位面积光功率,再结合曝光时间,得到一组反映感光面单位面积曝光能量值${H_{\lambda ij}}$,其中$i = (900 - 340)/\Delta \lambda + 1$(个),$\Delta \lambda $为采样波长间隔,j=18(个)。按照式(1)得到对应的一组${S_{\lambda ij}}$,有i×j个光功率测量区域。

经曝光、显影和定影之后,阶梯光楔板上的波长刻度线同时转印在感光材料上,用于感光材料曝光后的波长定位。在光密度计上以刻度线定位,依次测量出第i×j区域的光密度值${D_{\lambda ij}}$,即测量i×j个区域的光密度值,选定某一密度值${D_\lambda }$,在${S_{\lambda ij}}$中按线性插值法绘制$\lg {S_{\lambda ij}}$λ国标曲线图。

6 光谱灵敏度测定实验

完成光谱感光仪研制后,进行了感光材料光谱灵敏度特性测量实验。实验中采用中科院理化技术研究所研制的最敏感波长为692 nm的感光干板,对感光干板曝光3 min,曝光波段为590 nm~850 nm,然后显影1 min加定影5 min,得到如图 10所示的感光干板实物照片。随后利用光密度计扫描测量感光干板不同区域光密度值。选定光密度值D=1.0,在590 nm~740 nm范围内测量对应波长的光谱灵敏度,得到如图 11所示的光谱灵敏度曲线。根据图中曲线得出该感光干板的最敏感波长为690 nm,与692 nm偏差2 nm。

图 10 692 nm最为敏感的感光干板曝光照片 Fig. 10 The exposure result of photographic plate with the most sensitive wavelength of 692 nm

图 11 光密度D=1.0对应的光谱灵敏度曲线 Fig. 11 The spectral sensitivity curve for D=1.0
7 结论

本文研制的光谱感光仪利用110 mm×110 mm的大面积闪耀光栅和大柱面镜,产生尺寸为202 mm×90.5 mm、波段为340 nm~900 nm的宽光谱面,结合18级阶梯光楔板对宽光谱面进行光强调制,可以分区域曝光后得到感光材料对应区域的光谱灵敏度;然后通过光密度计精密分区域测量光密度值,综合获得不同光密度对应的光谱灵敏度曲线。该光谱感光仪光谱范围和波长不确定度优于国家标准,为相关领域研究提供了高精度光谱灵敏度测量方案。

参考文献
[1]
李景镇. 光学手册[M]. 西安: 陕西科学技术出版社, 1986: 2481-2518.
[2]
Chen Z H, Li Q X, Zhang F S. Strategies toward highly sensitive non-silver, photochemical imaging materials[J]. Information Recording Materials, 2013, 14(4): 31-35.
陈子辉, 李庆喜, 张复实. 高灵敏化学型非银盐感光材料的研发策略——从银盐感光材料说起[J]. 信息记录材料, 2013, 14(4): 31-35 [Crossref]
[3]
State Bureau of Technical Supervision. Method for determination of spectral sensitivity of photographic materials: GB/T 10557-1989[S]. 1989.
国家技术监督局.感光材料光谱灵敏度测定方法: GB/T 10557-1989[S]. 1989.
[4]
Kuchko A C. Aerial Photography Principle and Quality Evaluation[M]. Cai J L, Shen M Q, trans. Beijing: Surveying and Mapping Press, 1982: 177.
库奇科A C.航空摄影学: 原理与质量评价[M].蔡俊良, 沈鸣岐, 译.北京: 测绘出版社, 1982: 177.
[5]
Pierre G. Chimie Photographique[M]. Chen G M, trans. Beijing: China Film Press, 1992: 167-168.
皮·格拉夫基德.照相化学-第三分册: 彩色复演[M].陈光民, 译.北京: 中国电影出版社, 1992: 167-168.
[6]
Cogley R M, Knight S E, Toomey T J. Measuring photoresist spectral response with a spectrosensitometer[J]. Proceedings of SPIE, 1988, 922: 212-216. [Crossref]
[7]
Wang H Y. Application of spectrum photosensitive instrument using 8098-single-chip microcomputer[J]. Optics and Precision Engineering, 1991(2): 120-123.
王弘钰. 8098单片机在光谱感光仪上的应用研究[J]. 光学 精密工程, 1991(2): 120-123 [Crossref]
[8]
Walker R A. An equal-energy scanning spectrosensitometer[J]. Photographic Science and Engineering, 1970, 14(6): 421-427. [Crossref]
[9]
Sun L, Huang Y S, Sheng B, et al. Design of exposure system for the spectral sensitivity detection of the photosensitive material[J]. Opto-Electronic Engineering, 2016, 43(12): 72-78.
孙乐, 黄元申, 盛斌, 等. 感光材料光谱灵敏度测定曝光系统的设计[J]. 光电工程, 2016, 43(12): 72-78 [Crossref]
[10]
Banning M. Neutral density filters of chromel A[J]. Journal of the Optical Society of America, 1947, 37(9): 686-687. [Crossref]
[11]
Frenkel A, Zhang Z M. Broadband high-optical-density filters in the infrared[J]. Optics Letters, 1994, 19(18): 1495-1497. [Crossref]
[12]
Bittar A, White M G. Design of ultraviolet neutral density filters using metal-insulator inhomogeneous layers[J]. Applied Optics, 1992, 31(28): 6122-6126. [Crossref]
[13]
State Bureau of Machine Building Industry. Coating for optical element neutral-filter coating: JB/T 8226.5—1999[S]. Beijing: China Machinery Industry Press, 2000.
国家机械工业局.光学零件镀膜中性滤光膜: JB/T 8226.5—1999[S].北京: 中国机械工业出版社, 2000.
[14]
Ministry of Industry and Information Technology of the People's Republic of China. Linear variable neutral density filters: JB/T 11532—2013[S]. Beijing: China Machine Press, 2013.
中华人民共和国工业和信息化部.线性渐变中性密度滤光片: JB/T 11532—2013[S].北京: 机械工业出版社, 2013.
[15]
Li X R, Wu W G, An C H, et al. Research for preparation affecting factor of Ni80Cr20 alloy film[J]. Tool Engineering, 2017, 51(7): 39-41.
李学瑞, 武文革, 安春华, 等. Ni80Cr20合金薄膜制备影响因素的试验研究[J]. 工具技术, 2017, 51(7): 39-41 [Crossref]
[16]
Wang Z L, Wang R S, Yin X J, et al. The influence of different coating process on density neutrality of deep attenuation Ni-Cr film[J]. Opto-Electronic Engineering, 2014, 41(8): 90-94.
王忠连, 王瑞生, 阴晓俊, 等. 镀制方式对高衰减镍铬合金膜中性度的影响[J]. 光电工程, 2014, 41(8): 90-94 [Crossref]
[17]
Su Z J, Ni P, Xu S L. Realization of motion control system experimental platform based on LabVIEW[J]. Research and Exploration in Laboratory, 2011, 30(10): 38-39, 110.
苏仔见, 倪攀, 许少伦. LabVIEW在运动控制系统实验平台的应用和实现[J]. 实验室研究与探索, 2011, 30(10): 38-39, 110 [Crossref]
[18]
Dixit S A, Jain A. Implementation of PPC-SSR as final control element and interfacing of PLC with LabVIEW using modbus in two tank non interacting level control system[C]//Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1-6.
[19]
Wang G S, Deng Y, Xie Q, et al. Design electric closed-loop of multidrive NC servo control system based on LabVIEW[C]//Proceedings of the IEEE 4th International Conference on Digital Manufacturing & Automation, Qingdao, China, 2013: 449-452.
[20]
Junoh S C K, Abdullah L, Jamaludin Z, et al. Evaluation of tracking performance of NPID double hyperbolic controller design for XY table ball-screw drive system[C]//Proceedings of the 11th IEEE Asian Control Conference, Gold Coast, QLD, Australia, 2017: 665-670.
[21]
Niranjan P, Shetty S C, Byndoor C D, et al. Friction identification and control of ball screw driven system using PLC[C]//Proceedings of 2016 IEEE International Conference On Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2016: 803-808.