光电工程  2020, Vol. 47 Issue (4): 190272      DOI: 10.12086/oee.2020.190272     
涡旋光束轨道角动量在大气湍流传输下的特性分析
张利宏1,2,3 , 沈锋1,2 , 兰斌1,2     
1. 中国科学院自适应光学重点实验室,四川 成都 610209;
2. 中国科学院光电技术研究所,四川 成都 610209;
3. 中国科学院大学,北京 100049
摘要:从拉盖尔-高斯涡旋光束表达式出发,基于瑞利衍射理论,通过研究涡旋光束在大气湍流中传输时的旋转相干函数的变化规律,总结了涡旋光束在大气湍流中传输时各轨道角动量之间的串扰情况,使用了拓扑荷数探测概率描述串扰规律,并推导了拓扑荷数探测概率的解析表达式。研究了涡旋光束通过湍流后的拓扑荷数的分布情况,并将结果与涡旋光束通过大气随机相位屏的数值仿真结果进行了对比,给出了理论与仿真的拓扑荷数的探测概率随湍流强度以及初始涡旋光束拓扑荷数大小的关系图对比,验证了推导的拓扑荷数探测概率解析表达式的正确性。通过该表达式可进一步研究大气湍流与涡旋光束相互作用从而影响涡旋光束轨道角动量散射的本质,为涡旋光束的空间光通信中选择合适的拓扑荷数间隔,以及在不同湍流强度下选择合适束腰大小以减少串扰带来的误码率提供了理论依据。
关键词大气湍流    涡旋光束    拓扑荷数    轨道角动量    
Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent
Zhang Lihong1,2,3, Shen Feng1,2, Lan Bin1,2     
1. Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;
2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Starting from the expression of Laguerre-Gaussian vortex beam and based on Rayleigh diffraction theory, the variation of rotating coherence function of vortex beam propagating in atmospheric turbulence is studied. The crosstalk between the angular momentum of each orbital angular momentum when the vortex beam propagates in atmospheric turbulence is summarized. The topological charge detection probability is used to describe the crosstalk law, and the analytical expression of the topological charge detection probability is derived. The distribution of topological charge number of vortex beam passing through turbulence is studied, and the results are compared with the numerical simulation results of vortex beam passing through atmospheric random phase screen. The relationship between the detection probability of the theoretical and simulated topological charge numbers with the turbulence intensity and the topological charge number of the initial vortex beam is compared, and the correctness of the analytical expression of the topological charge number detection probability is verified. Through this expression, the interaction between atmospheric turbulence and vortex beam can be further studied, which can affect the essence of angular momentum scattering of vortex beam, and the suitable topological charge number interval can be selected for the space optical communication of vortex beam. It also provides a theoretical basis for selecting the appropriate beam waist size under different turbulence intensities to reduce the bit error rate (BER) caused by crosstalk.
Keywords: atmospheric turbulence    vortex beam    topological charge    orbital angular momentum    

1 引言

近年来随着对各类光束传输特性研究的不断深入,一种具有全新相位结构的涡旋光束逐渐被发现并因其新颖的特性成为一个研究热点。国内外广大学者围绕着涡旋光束的产生、传输、检测及应用等方面展开了一系列的研究工作,并取得了突出成果[1-2]。这种涡旋光束的中心光强为零,波前的相位结构为螺旋型,并在光束中心具有相位奇点。这种螺旋的相位结构使涡旋光束具有轨道角动量,从而为空间光通信提供了一种全新的信道复用维度[3-4],提高了信道容量。2009年,柯熙政团队[5]提出了一种结合计算全息图和无衍射光束传输特点的单光束轨道角动量编码方法,增加了传输数据量的同时保证了传输信息的准确性。2013年,Yang等[6]使用1.1 km的涡旋光纤承载2个OAM光束,每个光束具有10个波长通道,实现了1.6 Tbit/s的传输速度。然而,当涡旋光束通过大气湍流后,光束的强度和相位分布都会受湍流影响从而发生变化,进一步引起各轨道角动量之间的串扰,最终导致空间光通信的误码率的增加以及通信容量的降低[7-8, 4]。因此,研究涡旋光束在大气湍流中光强及相位的传输特性,以及影响涡旋光束的拓扑荷数散射的因素和轨道角动量串扰的规律,对于进一步研究轨道角动量与大气湍流的相互作用有重要意义,有利于提高空间光通信系统容量。

涡旋光束在大气中传输的相关研究大多是从光强传输特性出发,表征涡旋光束与大气湍流的相互作用。2012年,陈斐楠等[9]利用广义惠更斯-菲涅耳原理计算高阶贝塞尔高斯光束(BGB)在非柯尔莫哥诺夫湍流模型下传输的横向光强分布特性。2013年,江月松等[10]推导出了部分相干贝塞尔高斯光束在非柯尔莫哥诺夫湍流中传输时平均光强和偏振度的解析表达式。2016年,柯熙政[11]根据广义惠更斯-菲涅耳原理和交叉谱密度函数,推导出部分相干高斯-谢尔涡旋光束在大气湍流中传输时光强分布的积分形式,并通过一些特殊积分处理得到完整的解析表达式,分析讨论了传输距离、湍流强度和光束自身参数等对光束光强分布的影响。2017年,柯熙政团队[12]根据广义惠更斯-菲涅耳原理以及交叉谱密度函数,利用柯尔莫哥诺夫湍流谱推导得到部分相干离轴涡旋光束在大气湍流中传输时光束的光强分布表达式,讨论了离轴距离、拓扑荷数、束腰宽度、相干长度、传输距离、湍流强度等参数对光强分布的影响。然而,当涡旋光束应用于通信上时,研究其特有的轨道角动量在大气湍流中的传输特性变得尤为重要。2005年,Paterson等[13]使用旋转相干函数研究了涡旋光束在Kolmogorov湍流中拓扑荷数的探测概率与相对光束宽度的关系。2008年,Anguita等[14]数值分析了大气湍流对自由空间光通信系统的影响,研究了湍流引起的涡旋光束各轨道角动量之间的衰减和串扰。2009年,Glenn等[15]研究了纯涡旋光束在大气湍流中传输后不同拓扑荷数的探测概率,并获得了部分拓扑荷数探测概率随湍流强度变化的解析解。同年,张逸新等[16]通过将涡旋光束经大气传输后所得到的波视为角动量本征态的叠加,给出了各轨道角动量测量概率。2011年,黎芳等[17]在利托夫近似下,得到了接收孔径处拉盖尔-高斯光束的螺旋谱的积分表达式[18]。2013年,黎芳[19]利用分步傅里叶法和相位屏法仿真了在水平通信链路和上下行通信链路情况下拉盖尔-高斯光束的强度分布、相位分布及螺旋谱分布情况。2016年,Cheng等[20]利用轨道角动量探测概率积分表达式研究了在弱水平海洋湍流通道中部分相干拉盖尔-高斯光束的轨道角动量串扰情况。

在以前的研究中,主要是从旋转相干函数出发直接利用涡旋光束各拓扑荷数探测概率的积分表达式的数值计算来研究经大气湍流后各拓扑荷数的串扰情况,还没有发现有关拓扑荷数探测概率解析表达式的报道。本文主要推导了拉盖尔-高斯涡旋光束在Kolmogorov湍流中水平传输后拓扑荷数探测概率的解析表达式,利用该解析表达式研究了涡旋光束不同拓扑荷数的探测概率随湍流强度的变化规律以及原始拓扑荷数对探测概率的影响。

2 理论推导

在原点处的拉盖尔-高斯涡旋光束的场定义为[21]

$E\left( {x', y', z = 0} \right) = {E_0}{\left( {\frac{r}{{{w_0}}}} \right)^{\left| l \right|}}\exp \left( {\frac{{ - {r^2}}}{{w_0^2}}} \right)\exp \left( {{\rm{i}}l\varphi } \right), $ (1)

式中:x',y'表示发射面上的二维坐标,z表示水平传输的距离,E0表示该场的振幅,$r = \sqrt {{{x'}^2} + {{y'}^2}} $表示场点与原点的距离,w0表示初始光束束腰半径,l表示拓扑荷数(本文研究整数情况),$ \varphi $表示场点与原点的连线与x轴的夹角。由瑞利衍射理论,传输一段距离后,目标平面上的电场可以表示为

$E(x,y,z) = - \frac{{{\rm{i}}k}}{{2{\rm{\pi }}z}}\exp ({\rm{i}}kz)$
$ \cdot \iint {E(x',y',z = 0)}\exp \left\{ {\frac{{{\rm{i}}k}}{{2z}}\left[ {{{(x - x')}^2} + {{(y - y')}^2}} \right]} \right\}{\rm{d}}x'{\rm{d}}y',$ (2)

式中:k代表波矢,(xy)代表目标平面上的坐标。

将式(1)代入式(2)并通过丁攀峰等人的化简得[22]

$E(x,y,z) = \frac{{{{C'}_z}}}{{w_0^{\left| l \right|}}}\left\{ {\gamma _0^{\left| l \right|}\left\{ {\frac{1}{{{\alpha ^{\rm{2}}}}}{\rm{\pi }}} \right\}} \right\},$ (3)

式中:${C'_z} = \exp \left[ {\frac{{ - ({p^2} + {q^2})}}{{4{\alpha ^2}}}} \right]{C_z} $,

${C_z} = - \left[ {\frac{{{\rm{i}}k\exp ({\rm{i}}kz){E_0}}}{{2{\rm{\pi }}z}}} \right]\exp \left[ {\frac{{{\rm{i}}k({x^2} + {y^2})}}{{2z}}} \right],$

${x_0} = \frac{{ - {\rm{i}}p}}{{2{\alpha ^2}}}$, ${y_0} = \frac{{ - {\rm{i}}q}}{{2{\alpha ^2}}}$, $p = \frac{{kx}}{z}$, $q = \frac{{ky}}{z}$, ${\gamma _0} = {x_0} \pm {\rm{i}}{y_0}$(拓扑荷数为正取+,反之取-),

$ {\alpha ^2} = \frac{1}{{w_0^2}} - \frac{{{\rm{i}}k}}{{2z}}, k = \frac{{2{\rm{\pi }}}}{\lambda }。$

将式(3)展开得:

$E(r, \theta , z) = \frac{{ - {\rm{i}}k\exp ({\rm{i}}kz){E_0}}}{{2{\alpha ^{\rm{2}}}w_0^{\left| l \right|}z}}$
$ \cdot \left\{ {\exp \left( {\frac{{ - {k^2}{r^2}}}{{4{\alpha ^{\rm{2}}}{z^2}}}} \right)\exp \left( {\frac{{{\rm{i}}k{r^2}}}{{2z}}} \right) \cdot {{\left( {\frac{{kr}}{{2{\rm{i}}z{\alpha ^{\rm{2}}}}}} \right)}^{\left| l \right|}}\exp ( \pm {\rm{i}}l\theta )} \right\}。$ (4)

拉盖尔-高斯涡旋光束在湍流中传输一段距离z后,其光场表示为[23]

$\psi (r, \theta , z) = E(r, \theta , z)\exp [{\rm{i}}\varphi (r, \theta )], $ (5)

旋转相干函数定义为[13]

${C_\psi }(r, \Delta \theta , z) = \left\langle {{\psi ^ * }(r, 0, z)\psi (r, \Delta \theta , z)} \right\rangle , $ (6)

拓扑荷数探测概率定义为[13]

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta 。$ (7)

将式(4)~式(6)代入式(7)并化简积分项得出拓扑荷数探测概率的解析表达式。

假设大气湍流引起的折射率扰动是一个高斯随机过程,所以满足:

$\left\langle {\exp ({\rm{i}}x)} \right\rangle = \exp \left( { - \frac{1}{2}\left\langle {{{\left| x \right|}^2}} \right\rangle } \right), $

可得:

$\left\langle {\exp \{ {\rm{i[}}\varphi (r, \Delta \theta ) - \varphi (r, 0){\rm{]}}\} } \right\rangle {\rm{ = }}\exp \left( { - \frac{1}{2}\left\langle {{{\left| {\varphi (r, \Delta \theta ) - \varphi (r, 0)} \right|}^2}} \right\rangle } \right), $

再利用Kolmogorov模型的相位扰动结构函数

$\left\langle {{{\left| {\varphi (x) - \varphi (x - \Delta x)} \right|}^2}} \right\rangle = {D_\varphi }\left( {\left| {\Delta x} \right|} \right) = 6.88{\left( {\frac{{\Delta x}}{{{r_0}}}} \right)^{5/3}} , $

可得:

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta $
$\begin{gathered} {\rm{ = }}\iint {E_0^2w_0^2\eta \left\{ {\exp [ - 2{r^2}\eta ] \cdot {{(\eta {r^2})}^{\left| l \right|}}[\exp ( \pm {\rm{i}}\left| l \right|\Delta \theta )]} \right.} \\ \;\; \cdot \left. {\exp \{ {\rm{i[}}\varphi (r, \Delta \theta ) - \varphi (r, 0){\rm{]}}\} } \right\}r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}{\rm{d}}\Delta \theta \\ \end{gathered} $
${\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\iint {E_0^2w_0^2\exp \left[ {{r^2}\eta \left( { - 2 - \frac{{3.44 \times {2^{\frac{5}{3}}} \times {{\sin }^{\rm{2}}}\left( {\frac{{\Delta \theta }}{2}} \right)}}{{{r_0}^{\rm{2}}\eta }}} \right)} \right]}$
$ \cdot {(\eta {r^2})^{\left| l \right|}}{\rm{d}}(\eta {r^2})[\exp ( \pm {\rm{i}}\left| l \right|\Delta \theta )] \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}{\rm{d}}\Delta \theta。$ (8)

利用对$\eta {r^2}$${r^2}/{w'^2}$(w'是接收处涡旋光束束腰)的积分可得:

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta $
$ = \frac{{E_0^2w_0^2}}{{\rm{2}}}\int {\left| l \right|! \cdot {{\left( {2 + \frac{{3.44 \times {2^{\frac{5}{3}}} \times {{\sin }^{\rm{2}}}\left( {\frac{{\Delta \theta }}{2}} \right)}}{{{r_0}^{\rm{2}}\eta }}} \right)}^{ - \left| l \right| - 1}}\frac{{{\operatorname{e} ^{({\rm{i}}\Delta l\Delta \theta )}}}}{{2{\rm{ \mathit{ π} }}}}{\rm{d}}\Delta \theta } \\ = \frac{{E_0^2w_0^2\left| l \right|!}}{{{\rm{4 \mathit{ π} }}}}\int {{{\left( {2 + \frac{{3.44 \times {2^{\frac{2}{3}}}(1 - \cos (\Delta \theta ))}}{{{r_0}^{\rm{2}}\eta }}} \right)}^{ - \left| l \right| - 1}}} \cdot {\operatorname{e} ^{({\rm{i}}\Delta l\Delta \theta )}}{\rm{d}}\Delta \theta 。$ (9)

使用欧拉公式展开并忽略虚部可得:

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta $
$ {\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!\int {\frac{{\cos (\Delta l\Delta \theta )}}{{{{\left( {2 + \frac{{3.44 \times {2^{\frac{2}{3}}}(1 - \cos (\Delta \theta ))}}{{{r_0}^{\rm{2}}\eta }}} \right)}^{\left| l \right| + 1}}}}} {\rm{d}}\Delta \theta 。$ (10)

式(10)已经将式(7)中的二重积分化简为一重积分,简化了公式计算。下面对一重积分进行化简。

为了便于化简,首先令:$\zeta {\rm{ = }}3.44 \times {2^{2/3}}/{r_0}^{\rm{2}}\eta $(传输后束腰和大气相干长度的比值的平方乘以常数$3.44 \times {2^{2/3}}({w'^2}/r_0^2)$),$m = \left| l \right| + 1$$n = \Delta l{\rm{ = }}\left| {l' - l} \right|$$\Delta \theta = x$${r_0} = {(0.423{k^2}C_n^2z)^{( - 3/5)}}$表示大气相干长度,w是传输后的束腰大小。

则有:

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta $
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!\int {\frac{{\cos (nx)}}{{{{(2 + \zeta - \zeta \cos (x))}^m}}}} {\rm{d}}x。$ (11)

利用积分公式[24]

$\int\limits_{\rm{0}}^{{\rm{2 \mathit{ π} }}} {\frac{{\cos (nx){\rm{d}}x}}{{{{(1 - 2a\cos x + {a^2})}^m}}} = \frac{{2{\rm{ \mathit{ π} }}}}{{{a^n}{{({a^2} - 1)}^{2m - 1}}}}} $
$ \cdot \sum\limits_{k = 0}^{m - 1} {\left( {\begin{array}{*{20}{c}} {m + n - 1} \\ k \end{array}} \right)\left( {\begin{array}{*{20}{c}} {2m - k - 2} \\ {m - 1} \end{array}} \right)} {({a^2} - 1)^k}\;, \;\;{a^2} > 1, $ (12)

则需要将式(11)化简为和式(12)统一的形式,引入未知数y

$P(l') = \iint {{C_\psi }(r, \Delta \theta , z)r{\rm{d}}r \times \frac{{\exp ( - {\rm{i}}l'\Delta \theta )}}{{2{\rm{ \mathit{ π} }}}}}{\rm{d}}\Delta \theta $
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!\int {\frac{{\cos (nx)}}{{{{(2 + \zeta - \zeta \cos (x))}^m}}}} {\rm{d}}x$
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!\int {\frac{{\cos (nx)}}{{{{\left\{ {(1/y)[(2 + \zeta )y - \zeta y\cos (x)]} \right\}}^m}}}} {\rm{d}}x$
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!\int {\frac{{\cos (nx)}}{{{{(1/y)}^m}{{\left\{ {[(2 + \zeta )y - \zeta y\cos (x)]} \right\}}^m}}}} {\rm{d}}x$
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!{y^m}\int {\frac{{\cos (nx)}}{{{{\left\{ {[(2 + \zeta )y - \zeta y\cos (x)]} \right\}}^m}}}} {\rm{d}}x, $ (13)

$\left\{ {\begin{array}{*{20}{c}} {1 + {a^2} = (2 + \zeta )y} \\ {2a = \zeta y} \end{array}} \right. $,

则有:

$P{\rm{(}}l'{\rm{) = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!{y^m}\int {\frac{{\cos (nx)}}{{{{\left\{ {[(2 + \zeta )y - \zeta y\cos (x)]} \right\}}^m}}}} {\rm{d}}x$
$ = \frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!{y^m}\int {\frac{{\cos (nx)}}{{{{\left\{ {{\rm{[1 + }}{a^2} - 2a\cos (x)]} \right\}}^m}}}} {\rm{d}}x, $ (14)

解得:

$ y = \frac{{4 + 2\zeta + 4\sqrt {1 + \zeta } }}{{{\zeta ^2}}}, a = \frac{{\zeta y}}{2} = \frac{{2 + \zeta + 2\sqrt {1 + \zeta } }}{\zeta }。$

从而可化简式(10)的一重积分为

$P(l') = \frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!{y^m}\int {\frac{{\cos (nx)}}{{{{\left\{ {{\rm{[1 + }}{a^2} - 2a\cos (x)]} \right\}}^m}}}} {\rm{d}}x$
${\rm{ = }}\frac{{E_0^2w_0^2}}{{{\rm{4 \mathit{ π} }}}}\left| l \right|!{y^m} \cdot {\rm{2}} \cdot \frac{{\rm{ \mathit{ π} }}}{{{a^n}{{({a^2} - 1)}^{2m - 1}}}}$
$ \cdot \sum\limits_{k = 0}^{m - 1} {\left( {\begin{array}{*{20}{c}} {m + n - 1} \\ k \end{array}} \right)} \left( {\begin{array}{*{20}{c}} {2m - k - 2} \\ {m - 1} \end{array}} \right){({a^2} - 1)^k}, $ (15)

式中:

$ \left( {\begin{array}{*{20}{c}} n \\ k \end{array}} \right) = C_k^n = \frac{{n!}}{{k!(n - k)!}}, \eta {\rm{ = }}\frac{{{k^2}}}{{4{z^2}\left( {\frac{1}{{w_0^4}} + \frac{{{k^2}}}{{4{z^2}}}} \right)}} \cdot \frac{1}{{w_0^2}}{\rm{ = }}\frac{{\rm{1}}}{{{{w'}^2}}}, $

mnr0ay以及$\zeta $的定义同上。

将式(15)归一化得:

$P\left( {l'} \right) = {\left( {\frac{{\rm{1}}}{{\sqrt {{\rm{1 + }}\zeta } }}} \right)^{\left| l \right| + 1}} \cdot \frac{1}{{{a^n}}}\sum\limits_{k = 0}^{\left| l \right|} {\left( {\begin{array}{*{20}{c}} {\left| l \right| + n} \\ k \end{array}} \right)} \left( {\begin{array}{*{20}{c}} {2\left| l \right| - k} \\ {\left| l \right|} \end{array}} \right){\left( {\frac{{4\sqrt {1 + \zeta } }}{\zeta }a} \right)^{k - \left| l \right|}}。$ (16)

$t = \sqrt {1 + \zeta } $,可将式(16)简化为

$P\left( {l'} \right) = {\left( {\frac{{\rm{1}}}{t}} \right)^{\left| l \right| + 1}}{\left( {\frac{{t - 1}}{{t + 1}}} \right)^n}\sum\limits_{k = 0}^{\left| l \right|} {\left( {\begin{array}{*{20}{c}} {\left| l \right| + n} \\ k \end{array}} \right)} \left( {\begin{array}{*{20}{c}} {2\left| l \right| - k} \\ {\left| l \right|} \end{array}} \right){\left( {\frac{{4t}}{{{{(t - 1)}^2}}}} \right)^{k - \left| l \right|}}。$ (17)

n=0时,获得了原始拓扑荷数的探测概率:

$P(l' = l) = {\left( {\frac{{\rm{1}}}{t}} \right)^{\left| l \right| + 1}}\sum\limits_{k = 0}^{\left| l \right|} {\left( {\begin{array}{*{20}{c}} {\left| l \right|} \\ k \end{array}} \right)} \left( {\begin{array}{*{20}{c}} {2\left| l \right| - k} \\ {\left| l \right|} \end{array}} \right){\left( {\frac{{4t}}{{{{(t - 1)}^2}}}} \right)^{k - \left| l \right|}}。$ (18)
3 数值计算及分析

由式(16)可以发现涡旋光束拓扑荷数的探测概率和$\zeta $有直接的关系,而$\zeta $表征了不同束腰的涡旋光束在大气湍流中传输时的相干性特征。于是通过式(16)可以研究$\zeta $对涡旋光束原始拓扑荷数探测的影响,反映涡旋光束在大气湍流中的相对光束宽度(w/r0)与涡旋光束轨道角动量串扰的关系。由式(17)可以发现当湍流参数和涡旋光束参数为定值时,不同拓扑荷数的探测概率是关于n的指数函数与关于n的不同阶的幂函数的和的乘积。这表明了涡旋光束的拓扑荷数的探测概率总体上是沿着原始拓扑荷数向邻近的拓扑荷数呈指数衰减的,但这种指数衰减的趋势受到大气湍流参数、涡旋光束原始拓扑荷数的调制。通过式(17)研究各项湍流参数和光束参数对探测概率调制的意义与强度,从而探究在特定湍流条件下的最佳光束参数选择。

为验证理论推导的正确性,本文采用大气随机相位屏[25]模拟涡旋光束在大气湍流中传输后的拓扑荷数探测概率的仿真结果和使用式(16)计算的理论结果进行了对比。在水平传输路径上每50 m放置一个随机相位屏[26],水平传输距离为1 km。满足限制条件[27]:1)相位屏间隔Δz内属于弱湍流范畴,即平面波在Δz间隔内Rytov方差(平面波闪烁因子):$\sigma _{\rm{R}}^{\rm{2}}{\rm{ = 1}}{\rm{.23}}C_n^2{k^{7/6}}\Delta {z^{11/6}} < 0.1$。2)在传输距离Δz内的Rytov方差是整个传输距离Rytov方差的10%以内。采用Kolmogorov湍流模型功率谱[28],大气湍流折射率结构常数$C_n^2$取1×10-14 m-2/3~1×10-13 m-2/3,相位屏大小为120 mm×120 mm,采样点数为1024×1024,并采用次谐波补偿方法[29]补充低频空间频率不足的成分。

仿真方法[28]:如图 1所示,在频率域里,大气的特性由大气湍流的功率谱描述。根据大气湍流这一特性,可以对一复高斯随机数矩阵用Kolmogorov湍流模型的折射率功率谱的平方根构成的滤波函数进行滤波,然后进行逆傅里叶变换得到大气扰动相位(湍流屏):

$\varphi (j\Delta x, l\Delta y) = \sum\limits_{n = - {N_x}/2}^{{N_x}/2 - 1} {\sum\limits_{m = - {N_y}/2}^{{N_y}/2 - 1} {\left[ {a(n, m) + {\rm{i}}b(n, m)} \right]} } $
$\sqrt {\Delta {k_x}\Delta {k_y}{\Phi _\varphi }(n\Delta {k_x}, m\Delta {k_y}, z)} $
$ \cdot \exp \left[ {2{\rm{ \mathit{ π} i}}(jn/{N_x} + lm/{N_y})} \right], $ (19)
图 1 大气随机相位屏模拟涡旋光束在大气湍流中的传输图 Fig. 1 Random phase screens simulate the propagation of vortex beams in atmospheric turbulence

其中:Δx,Δy为采样间距取120 mm/1024;NxNy为阵列维数取1024;mn为整数,$a(n, m)$$b(n, m)$是均值为0,方差为1的高斯独立随机数,并取$a(0, 0)$=$b(0, 0)$=0;$\Delta {k_x} = 2{\rm{ \mathit{ π} /(}}{N_x}\Delta x{\rm{)}}$$\Delta {k_y} = 2{\rm{ \mathit{ π} }}/({N_y}\Delta y)$为谱空间栅格间距;${\Phi _\varphi }(n\Delta {k_x}, m\Delta {k_y}, z)$为折射率功率谱,取${\Phi _n}(k, z) = 0.033C_n^2(z){k^{ - 11/3}}$,其中z为光束传播方向;此时与z轴方向垂直的任意薄层切片上的大气相位功率谱为

${\Phi _\varphi }({k_r}) = 2{\rm{ \mathit{ π} }}{k^2} \cdot 0.033k_r^{ - 11/3}\int\limits_z^{z + \Delta z} {C_n^2(\xi )} {\rm{d}}\xi,$

其中:$k = 2{\rm{ \mathit{ π} }}/\lambda $,Δz为湍流薄层厚度,取谱空间栅格间距,${k_r} = {(k_x^2 + k_y^2 + k_z^2)^{1/2}}, \;{k_z} = 0$。于是可得:

$\varphi (j\Delta x, l\Delta y) = \sqrt {\Delta {k_x}\Delta {k_y} \cdot 2{\rm{ \mathit{ π} }}{k^2}\Delta z \cdot 0.0330054C_n^2(z)} $
$ \cdot \sum\limits_{n = - {N_x}/2}^{{N_x}/2 - 1} {\;\sum\limits_{m = - {N_y}/2}^{{N_y}/2 - 1} {\left[ {a(n, m) + {\rm{i}}b(n, m)} \right]} } $
$ \cdot {\left[ {{{(2{\rm{ \mathit{ π} }}n/{N_x})}^2} + {{(2{\rm{ \mathit{ π} }}m/{N_y})}^2}} \right]^{ - 11/12}}$
$ \cdot \exp \left[ {2{\rm{ \mathit{ π} i}}(jn/{N_x} + lm/{N_y})} \right], $ (20)

其中:k为三维空间波束矢量,此处生成为薄随机相位屏,因此k$({k_x}, {k_y}, 0)$。引入大气相干长度:${r_0} = {\left[ {0.432{k^2}\int {{\rm{d}}zC_n^2(z)} } \right]^{ - 3/5}} \approx {\left[ {0.423{k^2}\Delta zC_n^2(z)} \right]^{ - 3/5}}$,则大气湍流相位屏表示为

$ \varphi (j\Delta x, l\Delta y) = r_0^{ - 5/6}\sqrt {\Delta {k_x}\Delta {k_y} \cdot 2{\rm{ \mathit{ π} }} \cdot 0.078} \\ \cdot \sum\limits_{n = - {N_x}/2}^{{N_x}/2 - 1} {\;\sum\limits_{m = - {N_y}/2}^{{N_y}/2 - 1} {\left[ {a(n, m) + {\rm{i}}b(n, m)} \right]} } \\ \cdot {\left[ {{{(2{\rm{ \mathit{ π} }}n/{N_x})}^2} + {{(2{\rm{ \mathit{ π} }}m/{N_y})}^2}} \right]^{ - 11/12}}\\ \cdot \exp \left[ {2{\rm{ \mathit{ π} i}}(jn/{N_x} + lm/{N_y})} \right]。$ (21)

由于网格点取样有限,这样产生的大气随机相位屏丢失了低频成分,于是采用文献[29]方法补充低频成分后即可得到图 1中的湍流屏$ \varphi $n。从源平面开始将相位屏作为附加相位作用于光场,光场再经过一段z'=50 m的自由空间传输到下一个相位屏前的光场。自由空间的传输过程用菲涅尔衍射公式来描述[19],根据傅里叶变换的性质可知输入场与菲涅尔积分公式$\exp [{\rm{i}}k({x^2} + {y^2})/(2z')]$相卷积可得到输出光场,于是可将此卷积过程通过傅里叶变换来实现:

$ E(x, y, (n + 1)z')\\ = {F^{ - 1}}\left\{ {F\left\{ {E(x, y, nz')\exp [{\rm{i}}\varphi (x, y)]} \right\}\exp \left[ {\frac{{ - {\rm{i}}(k_x^2 + k_y^2)z'}}{{2k}}} \right]} \right\}。$ (22)

最后经过20个相位屏与真空传输得到1 km处接收面处光场E(x, y),然后将该光场直接代入式(7)计算接收面处各拓扑荷数的探测概率。

图 2展示了大气折射率结构常数$C_n^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$时,拓扑荷数为3,束腰半径为10 mm,振幅E0=1的拉盖尔-高斯涡旋光束在源平面处的光强图 2(a)及相位分布图 2(b),通过大气湍流后接收面上的光强图 2(c)和相位分布图 2(d),以及数值计算的各拓扑荷数的探测概率图 2(e)和采用式(16)计算的各拓扑荷数的理论探测概率图 2(f)

图 2 涡旋光束拓扑荷数为3,大气折射率结构常数Cn2=1×10-14 m-2/3时,涡旋光束在源平面处的光强分布(a)和相位分布(b);通过大气湍流后接受面上的光强分布(c)和相位分布(d);(e)数值计算的各拓扑荷数的探测概率;(f)采用式(16)计算的各拓扑荷数的理论探测概率 Fig. 2 The topological charge of the vortex beam is 3, the refractive index structure constant of atmospheric turbulence is Cn2=1×10-14 m-2/3. Intensity distribution (a) and the phase (b) of the vortex beam at the source plane; The intensity distribution (c) and the phase (d) on the receiving plane; (e) Probability of detection of each topological charge obtained by numerical calculation; (f) Probability of detection of each topological charge calculated by equation (16)

对比图 2(e)2(f),可以看出仿真接收到的探测概率和理论计算值相差较大,这是由于涡旋光束在生成的随机相位屏路径上的单次传输具有偶然性,从而大大影响拓扑荷数的探测概率的准确性,因此本文采取了计算平均探测概率的方法,对40次完整传输后的探测概率取平均值,和式(16)计算的理论值相比较。

图 3画出了当涡旋光束拓扑荷数为1,大气折射率结构常数$C_n^2$分别为$1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$时仿真及理论计算的各拓扑荷数的平均探测概率。

图 3 左列表示原始拓扑荷数为1时,不同湍流强度下涡旋光束传输40次后的各拓扑荷数的平均探测概率,右列表示相应拓扑荷数的平均探测概率和理论探测概率的对比。(a~b)大气折射率结构常数为Cn2=1×10-14 m-2/3;(c~d)大气折射率结构常数为Cn2=5×10-14 m-2/3;(e~f)大气折射率结构常数为Cn2=1×10-13 m-2/3 Fig. 3 The topological charge of the vortex beam is 1, the average detection probability of each topological charge after 40 times of vortex beam transmission at different turbulence and the comparison between the average detection probability and the theoretical detection probability of the corresponding topological charge. (a~b) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-14 m-2/3; (c~d) The refractive index structure constant of atmospheric turbulence is Cn2=5×10-14 m-2/3; (e~f) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-13 m-2/3

图 3可以发现使用式(16)计算的理论探测概率和随机相位屏仿真的平均探测概率结果比较吻合,甚至仿真对于原始拓扑荷数的探测概率还高于理论解析结果,猜测原因可能为:理论模型在做近似时降低了原始拓扑荷数和邻近拓扑荷数的探测概率之间的差异。

本文还仿真了拓扑荷数分别为3和9的涡旋光束经过大气湍流后的探测概率。

图 4画出了当涡旋光束拓扑荷数为3,大气折射率结构常数$C_n^2$分别为$1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$时仿真及理论计算的各拓扑荷数的平均探测概率。

图 5画出了当涡旋光束拓扑荷数为9时,大气折射率结构常数$C_n^2$分别为$1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$时仿真及理论计算的各拓扑荷数的平均探测概率。

图 4 左列表示原始拓扑荷数为3时,不同湍流强度下涡旋光束传输40次后的各拓扑荷数的平均探测概率,右列表示相应拓扑荷数的平均探测概率和理论探测概率的对比。(a~b)大气折射率结构常数为Cn2=1×10-14 m-2/3;(c~d)大气折射率结构常数为Cn2=5×10-14 m-2/3;(e~f)大气折射率结构常数为Cn2=1×10-13 m-2/3 Fig. 4 The topological charge of the vortex beam is 3, the average detection probability of each topological charge after 40 times of vortex beam transmission at different turbulence and the comparison between the average detection probability and the theoretical detection probability of the corresponding topological charge. (a~b) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-14 m-2/3; (c~d) The refractive index structure constant of atmospheric turbulence is Cn2=5×10-14 m-2/3; (e~f) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-13 m-2/3.

观察上述拓扑荷数分别为1、3、9的涡旋光束通过不同强度的大气湍流以后,利用式(16)和大气随机相位屏计算的各拓扑荷数的探测概率的比较,可以看出,解析式(16)能够很好地描述涡旋光束拓扑荷数在大气湍流中传输时的退化及串扰情况。即使在强湍流下,其解析结果也能与仿真结果在一定程度上相符。从图 5右列可以发现随着湍流强度的增加,仿真模拟曲线和理论计算结果在原始拓扑荷数附近的差距较大,这是因为当涡旋光束拓扑荷数较大又在湍流较强的情况下,涡旋光束的拓扑荷数与其附近的拓扑荷数串扰较大,理论上的探测概率已经极其相近,以图 5(d)为例,拓扑荷数9的理论探测概率为0.05503,拓扑荷数8的理论探测概率为0.05446,两者在理论上只相差0.00057。在实际探测中几乎可以忽略这种差距,所以在仿真模拟结构中呈现为在涡旋光束原始拓扑荷数附近的拓扑荷数的探测概率围绕着一平均值而上下波动。

图 5 左列表示原始拓扑荷数为9时,不同湍流强度下涡旋光束传输40次后的各拓扑荷数的平均探测概率,右列表示相应拓扑荷数的平均探测概率和理论探测概率的对比。(a~b)大气折射率结构常数为Cn2=1×10-14 m-2/3;(c~d)大气折射率结构常数为Cn2=5×10-14 m-2/3;(e~f)大气折射率结构常数为Cn2=1×10-13 m-2/3 Fig. 5 The topological charge of the vortex beam is 9, the average detection probability of each topological charge after 40 times of vortex beam transmission at different turbulence and the comparison between the average detection probability and the theoretical detection probability of the corresponding topological charge. (a~b) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-14 m-2/3; (c~d) The refractive index structure constant of atmospheric turbulence is Cn2=5×10-14 m-2/3; (e~f) The refractive index structure constant of atmospheric turbulence is Cn2=1×10-13 m-2/3

综上所述,可以得出结论:涡旋光束拓扑荷数的探测概率的解析表达式式(16)的理论计算结果和使用大气随机相位屏的仿真模拟结果十分吻合,从而证明了式(16)的正确性。通过该解析表达式可以研究不同拓扑荷数的涡旋光束在不同大气湍流条件下轨道角动量的变化规律以及从原始拓扑荷数向邻近拓扑荷数的散射规律等,进一步通过研究拓扑荷数探测概率,揭示大气湍流与涡旋光束相互作用从而影响光束轨道角动量的本质。

图 6画出了利用式(16)计算的涡旋光束经过大气湍流后原始拓扑荷数的探测概率,以及原始拓扑荷数散射到其他拓扑荷数的情况。

图 6 不同拓扑荷数的涡旋光束的探测概率随大气折射率结构常数(a)和相干性参数ζ (c)的变化;拓扑荷数为1的涡旋光束经过湍流大气后与邻近拓扑荷数的串扰情况随大气折射率结构常数(b)和相干性参数ζ (d)的变化 Fig. 6 The detection probability of a vortex beam with different topological charge varies with the atmospheric refractive index structure constant (a) and with coherence parameter ζ (c); Crosstalk between vortex beams with original topological charge 1 and adjacent topological charges when propagating in different turbulent atmosphere (b) and with coherence parameter ζ (d)

图 6中可以观察到当涡旋光束的拓扑荷数增加的时候,在相同的湍流大小下,其更容易向邻近的拓扑荷数进行散射,其散射规律体现在了图 6(b)中,其规律和文献[12]中的图 4相符。当湍流强度逐渐增加时,涡旋光束原始拓扑荷数探测概率降低,邻近拓扑荷数的探测概率增加并趋于相同,同样解释了图 5(d)的仿真模拟曲线在峰值周围的波动现象。同时还观察到,在相同湍流强度下,拓扑荷数越小,其探测概率受湍流的影响就越小,轨道角动量之间的串扰也越小,拓扑荷数的散射范围也越小。

从拓扑荷数的探测概率的解析表达式式(16)可以发现:探测概率仅是$\zeta $($3.44 \times {2^{2/3}}({w'^2}/r_0^2)$)的函数,利用$\zeta $可研究涡旋光束在大气湍流中的相干性特征对探测概率的影响。利用式(16),图 6(c)6(d)画出了探测概率随$\zeta $的变化,从图 6可以很直观地看出影响拓扑荷数探测概率的主要因素是相干性参数$\zeta $$\zeta $是大气湍流折射率常数和接收处涡旋光束的束腰共同作用的结果,因此可以利用相干性参数$\zeta $在不同的湍流条件下选择合适的光束束腰。

4 结论

基于瑞利衍射理论,本文通过推导拉盖尔-高斯涡旋光束在大气湍流中传输时拓扑荷数探测概率的解析表达式,研究了涡旋光束轨道角动量在大气湍流中传输时的散射情况。并将结果和涡旋光束通过大气随机相位屏的数值仿真结果进行了对比。研究表明,文中的解析解式(16)与仿真结果十分符合,尤其是在涡旋光束拓扑荷数比较小以及湍流强度比较弱的情况下。本文根据解析表达式,引入了相干性参数来描述涡旋光束与大气湍流的相互作用,进一步分析了大气湍流强弱、涡旋光束原始拓扑荷数等对探测概率的影响。研究发现,涡旋光束的拓扑荷数的探测概率总体上是沿着原始拓扑荷数向邻近的拓扑荷数呈指数衰减的,但这种指数衰减的趋势受到大气湍流参数、涡旋光束原始拓扑荷数的调制。可以通过式(17)研究各项湍流参数和光束参数对探测概率调制的意义与强度,从而探究在特定湍流条件下的最佳光束参数选择。本文研究为涡旋光束的空间光通信中选择合适的拓扑荷数间隔,以及利用相干性参数研究在不同湍流强度下选择合适束腰大小以减少串扰带来的误码率提供了依据。

参考文献
[1]
Ke X Z, Wang J. Generation, transmission, detection and application of vortex beams[M]. Beijing: Science Press, 2018.
柯熙政, 王姣. 涡旋光束的产生、传输、检测及应用[M]. 北京: 科学出版社, 2018.
[2]
Chen R S, Wang J H, Zhang X Q, et al. Fiber-based mode converter for generating optical vortex beams[J]. Opto-Electronic Advances, 2018, 1(7): 180003. [Crossref]
[3]
Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456. [Crossref]
[4]
Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006. [Crossref]
[5]
Lv H, Ke X Z. Research on the beam with orbital angular momentum used in encoding and decoding of optical communication[J]. Acta Optica Sinica, 2009, 29(2): 331-335.
吕宏, 柯熙政. 具轨道角动量光束用于光通信编码及解码研究[J]. 光学学报, 2009, 29(2): 331-335 [Crossref]
[6]
Yue Y, Bozinovic N, Ren Y X, et al. 1.6-Tbit/s muxing, transmission and demuxing through 1.1-km of vortex fiber carrying 2 OAM beams each with 10 wavelength channels[C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013.
[7]
Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062-4065. [Crossref]
[8]
Malik M, O'Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195-13200. [Crossref]
[9]
Chen F N, Chen J J, Zhao Q, et al. Properties of high order bessel gaussian beam propagation in non-kolmogorov atmosphere turbulence[J]. Chinese Journal of Lasers, 2012, 39(9): 913001.
陈斐楠, 陈晶晶, 赵琦, 等. 高阶贝塞尔高斯光束在非柯尔莫哥诺夫大气中的传输特性[J]. 中国激光, 2012, 39(9): 913001 [Crossref]
[10]
Jang Y S, Zhang X G, Wang S H, et al. Propagation of partially coherent bessel-gaussian beams in non-kolmogorov turbulence[J]. Acta Photonica Sinica, 2014, 43(1): 101001.
江月松, 张新岗, 王帅会, 等. 部分相干贝塞尔高斯光束在非柯尔莫哥诺夫湍流中的传输特性[J]. 光子学报, 2014, 43(1): 101001 [Crossref]
[11]
Ke X Z, Wang C Z. Intensity distribution of the partially coherent vortex beams propagating in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110604.
柯熙政, 王超珍. 部分相干涡旋光束在大气湍流中传输时的光强分布[J]. 激光与光电子学进展, 2016, 53(11): 110604 [Crossref]
[12]
Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.
柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 0101005 [Crossref]
[13]
Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901. [Crossref]
[14]
Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414-2429. [Crossref]
[15]
Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142-144. [Crossref]
[16]
Zhang Y X, Cang J. Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication[J]. Chinese Physics Letters, 2009, 26(7): 074220. [Crossref]
[17]
Li F, Tang H, Jiang Y S, et al. Spiral spectrum of laguerre-gaussian beams propagating in turbulent atmosphere[J]. Acta Physica Sinica, 2011, 60(1): 014204.
黎芳, 唐华, 江月松, 等. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性[J]. 物理学报, 2011, 60(1): 014204 [Crossref]
[18]
Torner L, Torres J P, Carrasco S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873-881. [Crossref]
[19]
Li F. Propagation characteristics of optical vortices beam in intermediate fluctuation turbulent atmosphere[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070101.
黎芳. 涡旋光束在中强度湍流大气中的传输特性[J]. 激光与光电子学进展, 2013, 50(7): 070101 [Crossref]
[20]
Cheng M J, Guo L X, Li J T, et al. Propagation of an optical vortex carried by a partially coherent laguerre-gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17): 4642-4648. [Crossref]
[21]
Zhang W Y, Kuzyk M G. Effect of a thin optical Kerr medium on a laguerre-gaussian beam[J]. Applied Physics Letters, 2006, 89(10): 101103. [Crossref]
[22]
Ding P F. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(5): 118-122.
丁攀峰. 整数与分数阶涡旋光束相位奇点的稳定性分析[J]. 华中科技大学学报(自然科学版), 2011, 39(5): 118-122
[23]
He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826-829. [Crossref]
[24]
Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. New York: Academic Press, 2014.
[25]
Wang L J, Li Q, Wei H G, et al. Numerical simulation and validation of phase screen distorted by atmospheric turbulence[J]. Opto-Electronic Engineering, 2007, 34(3): 1-4, 9.
王立瑾, 李强, 魏宏刚, 等. 大气湍流随机相位屏的数值模拟和验证[J]. 光电工程, 2007, 34(3): 1-4, 9 [Crossref]
[26]
Zou L, Zhao S M, Wang L. The effects of atmospheric turbulence on orbital angular momentum-multiplexed system[J]. Acta Photonica Sinica, 2014, 43(9): 0901001.
邹丽, 赵生妹, 王乐. 大气湍流对轨道角动量态复用系统通信性能的影响[J]. 光子学报, 2014, 43(9): 0901001 [Crossref]
[27]
Wang F, Yu J Y, Liu X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203.
王飞, 余佳益, 刘显龙, 等. 部分相干光束经过湍流大气传输研究进展[J]. 物理学报, 2018, 67(18): 184203 [Crossref]
[28]
Peng H. Research of the sotchastic parallel gradient descent algorithm for wavefront control technique[D]. Changsha: National University of Defense Technology, 2008.
彭浩.随机并行梯度下降波前控制算法研究[D].长沙: 国防科学技术大学, 2008.
[29]
Lane R G, Glindemann A, Dainty J. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224. [Crossref]