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Inverse sensing is an important research direction to provide new perspectives for optical sensing. For inverse sensing, 
the primary challenge is that scattered photon has a complicated profile, which is hard to derive a general solution. In-
stead of a general solution, it is more feasible and practical to derive a solution based on a specific environment. With 
deep learning, we develop a multifunctional inverse sensing approach for a specific environment. This inverse sensing
approach can reconstruct the information of scattered photons and characterize multiple optical parameters simultane-
ously. Its functionality can be upgraded dynamically after learning more data. It has wide measurement range and can 
characterize the optical signals behind obstructions. The high anti-noise performance, flexible implementation, and ex-
tremely high threshold to optical damage or saturation make it useful for a wide range of applications, including self-driving 
car, space technology, data security, biological characterization, and integrated photonics.  
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Introduction 
Optical sensing is fundamental for a great number of ap-
plications. Most of conventional optical sensors rely on 
direct interception and capture of photons. They suffer 
from intrinsic limitations, including the damage of the 
device under intense light irradiation. The information 
collected is also limited as one sensor is mostly designed 
to characterize one specific optical parameter. Inverse 
sensing by scattered photons has been invented to over-
come these limitations. Scattered photons contain abun-
dant information, including the morphology of the scat-
tering centers as well as the wavelength, intensity and 
direction of the incident light1–5. However, previous study 
of inverse sensing proves to be extremely challenging due 
to the complicated and nonlinear nature of the scattered 
photons6–13. If the scattered photons can be effectively 
analyzed, it can overcome many limitations in optical 

sensing. Instead of relying on the light-matter interaction 
and physically capturing photons, a new sensing concept 
collects much information from the spatial distribution of 
the scattering photons. The detection unit is no longer 
fully restricted by the material properties which are used 
to make the optical sensor14–16. 

How to efficiently analyze the information carried by 
scattered photons is the key challenge. Previous scientific 
researches aim to derive a general solution to the inverse 
sensing problems13,17,18. Due to the huge computational 
resources required, such a general solution is beyond 
reach for most of the practical situations. Furthermore, 
conventional computational methods are also not effec-
tive for scattered photon analysis. Commonly used simu-
lation platforms include: a) Finite-Difference 
Time-Domain method19 (Lumerical), b) transmission line 
matrix based on either the time domain or finite integra-
tion technique20 (CST, SIMULIA), c) cross-platform finite 
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element analysis based on partial differential equations21 
(COMSOL Multiphysics), and d) ray-tracing model geo-
metrical optical solver22 (Zemax). All these methods 
cannot handle inverse sensing problems. Light source is 
always required to be pre-defined. Hence these computa-
tional methods are not suitable for the inverse analysis of 
the scattered photons.  

In this paper, a more efficient solution is provided. It is 
proposed to study inverse sensing problems from a dif-
ferent perspective. Instead of aiming at a general solution, 
it is more efficient and straightforward to reconstruct 
scattered photons in a specific and well-understood envi-
ronment. Our solution is based on convolutional neural 
networks (CNN) deep learning (DL)23–28. The foundation 
of this method is the strong capability of DL to inversely 
analyze complicated spatial light distribution in a given 
environment. Based on it, a multifunctional “inverse 
sensing” method is demonstrated, which is as efficient as 
its direct sensing counterpart. Compared to a general 
solution, our solution is also useful for a large number of 
circumstances. Most optical sensors are designed to func-
tion in a specific environment, installed at a fixed location, 
and run for a pre-set purpose. Examples are data reader 
for blue-ray disks, surveillance cameras, optical sensors in 
communication networks, and detectors for various in-
dustrial monitoring purposes. 

Specifically, in the first part, the fundamental physics 
and DL toolkit are studied to efficiently analyze the scat-
tered photons’ profiles, which overcome various chal-
lenges for direct sensing. Its capability and potentials are 
demonstrated to inversely detect multiple optical param-
eters, such as direction and intensity. In the second part, 
key features, advantages, and applications are discussed. 
Firstly, the function and capability are dynamic. Com-
pared to the conventional optical sensors with a fixed 
function, this DL based method can upgrade after con-
tinuous data training. Secondly, multi-functional detec-
tion is achieved in complicated situations. Multiple pa-
rameters can be monitored simultaneously, even if the 
light signal overlaps with each other. Thirdly, this method 
removes many limitations for conventional optical sen-
sors’ implementation. This inverse sensing method is 
non-contact, which provides accurate remote measure-
ment even if the path of the optical signal is further away 
from the sensor. Fourthly, without the direct exposure to 
the intensive light signal, the non-contact feature makes 
the device hardly get saturated or damaged. It is demon-
strated in the later section that this method provides a 
nearly unlimited measurement range, which is only re-
stricted by the database to train the DL model. The same 
method can detect the bio-dyes fluorescence with 0.42 
nW continuous emissions and laser pulse at a peak power 
up to 7.2 GW (pulse energy/pulse duration). Fifthly, as 
the foundation of such analysis is the DL26,28, it is less af-
fected by the environment, which offers strong capability 
to select signal out of noise.  

Results and discussion 

Physics and DL model 
Scattered photons are abundant in most optical applica-
tions. There are many sources in the environment. One 
primary source for most of the optical devices is the scat-
tering centers in air, in which light is scattered by mole-
cules of various sizes (air molecules and dust as demon-
strated in Fig. 1(a). Beyond the scattering centers in the 
light path, the reflective interfaces also contribute to light 
scattering (Fig. 1(b)). The properties of scattered photons 
depend on many factors including both the light source 
and environment. Hence, scattered photons provide 
unique opportunities for optical detection. However, to 
directly capture the information proves to be challenging. 
Scattered photons mostly come from multiple sources. 
Characterization by simply measuring the intensity at 
selected points has been applied in some systems, for 
example, dynamic light scattering (DLS) which is used to 
determine the size distribution profile of small particles 
in suspension. However, the amount of information col-
lected is highly limited. Alternatively, a more comprehen-
sive collection is available by studying the spatial distribu-
tion of the scattered photons in the environment (Figs. 
1(a) and 1(b)). Wavelength, incident direction, and inten-
sity of the light are some of the key parameters that de-
cide the scattered photon profile. Thus, it is possible to 
characterize these parameters by analyzing the profile of 
the scattered photon (Fig. 1(c)). The analysis of the scat-
tered photon is an inverse sensing problem. The light 
source is unknown, which requires a novel inverse analy-
sis approach.  

We apply the CNN DL to develop our method, which 
belongs to the supervised learning paradigms26,28–31. This 
method is dedicated to deriving the CNN function be-
tween a complicated input and a simple output (Fig. 2). 
Such a function is governed by a set of parameters. The 
proper set of parameters is decided by epochs of “training” 
processes, in which a pair of training data, composed of 
the input with certain features and its corresponding 
output value, is analyzed to modify the parameters. The 
modification of the parameters is based on CNN with 
certain optimization approaches to process a large quan-
tity of data. The “training” process repeats until the set of 
the parameters can give accurate prediction between the 
input and output. For our application scope, we design a 
specific DL workflow modified with the pre-imaging 
process for the optimization of optical applications, which 
is described in the supplementary materials. The training 
data is the optical image of the scattered photon profile 
and the corresponding physical parameters of interests. 
The softmax function is selected as the activation func-
tion to output the probability distribution over different 
classes:  
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Fig. 1 | Mechanisms to detect information from scattered photon. Optical images of (a) Rayleigh scattering by small molecules, and (b) 

scattering at the interfaces between air and reflective surfaces. Laser: 532 nm, CW laser. (c) Schematic of the setup to analyze the scattered 

photon from the laser beam. Power meter is the conventional instrument used for the calibration and training data collection. (d) Diagram showing

the detection of the direction of the incident laser beam. Data presented in the spherical coordinates with the green line that denotes the incident 

laser (polar angle denoted by θ and azimuthal angle φ). (e) Experimental results to show the accuracy of the CNN DL to measure the intensity of 

the incident laser after every training epoch. Blue curve denotes the accuracy of the model to measure the training data and red curve denotes the

accuracy to measure the independent testing data different from the training data. The accuracy of the model is defined as the peak value as 0.99

on the test data curve.  
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Fig. 2 | Schematic illustration of the convolutional neuron network. The details of the pre-processing, architecture, and parameter settings 

are described in the supplementary materials. For this neuron network, the input is a 150×150×3 image pre-processed from optical images taken 

from a CMOS. A 2 layers’ convolutional network, 1 fully connected layer and one output are used to calculate the light properties of interests.  
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where f denotes the softmax output, which is the proba-
bility that predicted class i; x is the input value for the 
softmax function; K is the number of the classes for iden-
tification. Cross entropy loss is selected as the loss func-
tion, which is the function that optimization function 
needs to minimize through training:  

1
( ) log( )

K

j j
j
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   ,           (2) 

where js is the predicted probability of class j and jy is the 
ground truth of class j. The final function is recorded and 
tested on independent samples to verify the accuracy. In 
all the experiments, the testing set is independent from 
the training set. This approach can go beyond the limita-
tions of the conventional optical sensors. By analyzing the 
spatial distribution of photons, it transforms a wide-
ly-used complementary metal–oxide–semiconductor 
imaging device (CMOS) into a multi-functional sensor 
that can measure multiple light properties as well as the 
incident direction (Figs. 1(d) and 1(e)). Although the 
initial training process may take hours for our case, once 
the final function is found, it takes an average of 0.05 se-
cond to process the scattered photon profile and deter-
mine its physical value.  

Light intensity and direction characterization 
Next, how this method can be applied in inverse sensing 
is demonstrated. Specifically, to measure the incident 
direction of the laser beam (Fig. 1(d)), the CMOS is fixed 
to maintain a static field of view. We then vary the inci-
dent angle of the laser beam, and the profile of the scat-
tered photon is changed correspondingly. At every inci-
dent angle, 25 images are taken, which make up the 
training data set for that incident angle. The entire train-
ing data set consists of all the data at different incident 
angles. Our inverse sensing method is applied to analyze 
the entire training data set. To demonstrate its capability, 
the range of the incident angle is set to rotate in the hori-
zontal and vertical directions. The experimental condi-
tions and accuracy after each training epoch are de-
scribed with more details summarized in the supplemen-
tary material. The accuracy of the DL approach can reach 
~100% for this experimental condition, which means that 
our method can achieve the same accuracy as the instru-
ments used to collect the dataset. In addition, it is able to 
detect small variation of the incident angle down to 1 
degree. This accurate detection can be applied to passive 
laser radar mechanisms to detect the location of the sig-
nal source. As the scattered photon analysis does not have 
to intercept the light beam, it no longer requires to di-
rectly capture the incident light and greatly extends the 
detection range by scattered photon, which is useful for 
various applications based on light detections, including 
self-driving cars, and industrial monitoring.  

This method can also evolve and upgrade its functions 
by learning other data of interests. It is important to 

measure the intensity of the laser for many applications. 
Our inverse sensing method is applied to measure the 
training data of intensity. The collection of the training 
data set is similar to the previous experiments, except that 
the incident angle is kept constant and the intensity is 
tuned. In our experiment, the incident light source is a 
532 nm continuous wave (CW) laser. The incident power 
increases from 0 to 0.15 W with the increment of 0.01 W. 
The accuracy of the experimental results is presented in 
Fig. 1(e). The peak value of 0.99 indicates that the param-
eters set in epoch 8 generate a function with 99% predic-
tion accuracy. It should be noted that the measurement 
range and resolution depend on the training data. 
Theoretically, there is no limitation on the measurement 
range or resolution and this method can be as accurate as 
the best scientific instruments used for the calibration 
and collection of the training dataset. In addition, due to 
the large quantity of information contained in the scat-
tered photon profile, it can even go beyond the capability 
of the conventional scientific instruments.  

Advantages and key features 
With our approach, the scattered photon transfers from 
noises to resources of useful information, which brings us 
many unique advantages. Compared to conventional 
methods which only measure signals in the straight light 
path, our method can extend the vision beyond the sight 
of view. To verify this concept, we design the experiment 
to collect the training data set which contains only the 
scattered photon without any incident light beam in the 
image (Fig. 3(a)). In this situation, the characterization 
relies on the scattered photon reflected by the surround-
ing objects. Our inverse sensing method is applied and 
the results in terms of accuracy after training are pre-
sented in Fig. 3(b). In our experiments, the accuracy can 
be as high as 99%, indicating a reliable measurement for 
these “out-of-sight” situations. Furthermore, for conven-
tional detectors, the optical signals are treated as scalar 
values. The amplitudes of multiple signals are added to-
gether. The inverse sensing method is based on the spatial 
distribution of photons. It is more similar to a vector, 
which also contains the direction information of the light. 
This advantage makes it possible to distinguish multiple 
signals and monitor them simultaneously (Figs. 3(c) and 
3(d)). In this experiment, two light beams present in the 
same field of view. While there is overlapping of the scat-
tered photon at certain locations, there are also areas that 
are dominated by the scattered photon from one laser 
beam. This case is challenging for most convention opti-
cal sensors such as the power meters as the second laser 
beam contributes noises. Our method can successfully 
distinguish two laser beams and the intensity measure-
ment can be as accurate as 100% in our experimental 
conditions. While we only demonstrate the simultaneous 
monitoring of two laser beams with one single sensor, this 
approach can be further developed to monitor a larger 
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number of independent remote sensing signals, which 
shows great potentials for the integrated photonics and 
optical information devices.  

Furthermore, as this approach is not required to inter-
cept the light beam in the optical path, remote monitor-
ing is also possible (Fig. 3(e)). In this experiment, the 
laser beam has the diameter of 2.25 mm. We place the 
CMOS 5 meters away from the laser beam. The laser pa-
rameters are the same as those in the experiment of Fig. 
1(e) and the training data set is collected to measure the 
laser intensity from 0 to 0.15 W. In spite of the distance 
between the CMOS and the laser signal, the accuracy of 
measurement can still reach 97%, which is similar to the 
previous experimental results. These results demonstrate 
its capability to conduct remote characterization, showing 
the potentials for large area monitoring and high energy 

non-contact applications for the space technology. For all 
these applications, the stability of our methods needs to 
be verified. Therefore, we repeat the measurement of the 
intensity in the room-light illumination condition. As DL 
based mechanism is well-known for its strong capability 
to select the critical information in an image32, our 
method can eliminate the noises from other light sources 
and detect the intensity of the laser beam with an accura-
cy of 99%, which is the same as the experimental results 
previously. The high noise-resistance is superior to the 
conventional approaches and is a widely demanded fea-
ture in our optical sensing, as discussed in the following 
sections.  

 
Applications and potentials 
This inverse sensing method can be applied to highly 
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Fig. 3 | Accuracy of the inverse sensing in different conditions. (a) Schematic of the CNN DL method to measure the intensity of the laser 

beam by analyzing the scattered photon on the surrounding objects. The incident light beam is completely beyond the field of view; Experimental

results of the accuracy corresponding to the (b) measurement without the incident light beam in the field of view (peak value 0.99), and (c) sim-

ultaneous monitoring of two incident laser beams with one single CMOS (peak value 1). (d) Schematic of the CNN DL to measure two incident 

laser beams. (e, f) Experimental results of the accuracy corresponding to the remote detection and noise test, respectively. 



                Opto-Electronic Advances      DOI: 10.29026/oea.2019.190019 

 

190019‐6 

© 2019 Institute of Optics and Electronics, Chinese Academy of Sciences. All rights reserved. 

challenging applications. The first application aims to 
achieve detection that “goes through the wall”. Illustrated 
by Figs. 4(a) to 4(c), one object, a horse, is completely 
hidden behind a bulk obstruction that prevents the detec-
tion by conventional means. With this inverse sensing 
method, one laser beam is irradiated near the obstruction 
and its scattered photon illuminates the hidden horse. By 
detecting and analyzing its scattered photon profile in the 
environment, it is able to characterize the property of the 
hidden object. To better study its capability, 4 different 
types of objects are selected and put behind the obstruc-
tion. Those objects are of different shapes, dimensions, 
and reflective properties. This inverse sensing can suc-

cessfully detect and identify every object. The accuracy 
can reach 100% in our experimental conditions (The ac-
curacy after every training epoch is presented in the sup-
plementary materials). Compared to other methods to 
achieve similar purposes, our approach is “automatic”, 
requires much less computational powers, and is not lim-
ited to certain environments3,33. Due to the impressive 
learning ability of the DL methods, this approach has 
potentials to more general situations with more intensive 
training. With the similar development strategy for the 
self-driving car to build the database, it is highly promis-
ing to launch a completely new sensing method that pro-
vides new vision without any blind area.  
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Fig. 4 | Applications of the inverse sensing. (a–c) Illustration of detecting the light which “goes through the wall”. (a) The object is completed 

hidden from the sight of the conventional detector. (b) The scattered photon from the detection laser reveals information of the hidden object. (c)

The analysis of the scattered photon re-constructs and identifies the hidden object. (d, e) Dynamic monitoring of the high energy pulsed laser 

intensity. (d) Accuracy of the CNN DL after each training epoch for the dynamic laser ablation monitoring. (e) Monitoring of the laser intensity at 

the focal spot during the laser fabrication. (f–h) Light emission intensity characterization of the fluorescence molecules. Optical image of the 

Rhodamine B patterns irradiated by 532 nm pumping light at different intensities (from left to right: 8, 16, and 29 mW, respectively, scale bar: 50 

μm). 
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For the second application, we show two examples of 
applying this inverse sensing method to measure the light 
signals of different energy levels. Firstly, this inverse 
sensing method is applied to detect the intensity of the 
laser pulse of one femtosecond pulsed laser (maximum 
average power 3.6 W, 100 fs, 800 nm, and 1000 Hz repeti-
tion rate). In this experiment, when the output power is 
set as 20% of the max power, the peak power of one single 
pulse can reach 7.2 GW, which can damage most materi-
als. Our inverse sensing is applied to study the intensity at 
the focal spot in the process of laser ablation of steel. The 
scattered photon profiles at different laser intensities 
make the training sets for the DL training. More details 
about the experimental procedure can be found in the 
supplementary materials. After the training, the accuracy 
of the intensity characterization goes up to 100% in our 
experimental conditions (Fig. 4(d)). With the training 
results, we can dynamically monitor the average power of 
the laser pulse at every second in the fs laser mi-
cro-fabrication. The results are presented in Fig. 4(e), 
which show the increase of the peak power from zero to 
GW level. For every data point, it only takes ~0.05 se-
conds for the DL analysis. As the entire method is based 
on the profile of scattered photon, it does not saturate 
even at high laser intensity. Furthermore, the detector will 
not get damaged by the laser pulse. We achieve the dy-
namic monitoring at the focal point of one femtosecond 
laser ablation (Fig. 4(e)). It can provide rich insights on 
the in-situ light matter interaction and there are huge 
potentials for other high energy applications, such as laser 
weapons and advanced manufacturing.  

Secondly, this inverse sensing method is also applied to 
measure extremely weak signal of the fluorescence from 
bio-dyes as presented in Figs. 4(f) to 4(h). Rhodamine B 
molecules are uniformly spreaded on a glass substrate. 
Such samples are patterned with a femtosecond laser. The 
intensity of the laser is carefully controlled so that it is 
sufficient to ablate the Rhodamine B molecules but lower 
than the damage threshold of the glass substrate. After 
the fabrication, Rhodamine B islands are created which 
have similar scales as the cells of living organisms (Fig. 
4(h), details can be found in the supplementary materials). 
When we pump the sample with a 532 nm CW laser, the 
CMOS on the microscope captures the image of the fluo-
rescence emission. The DL is applied to build the func-
tion of its emission intensity with respect to different 
pumping conditions. After the training, it is used to de-
tect the emission intensity of the Rhodamine B island 
(Figs. 4(f)–4(h), the details of the training process and its 
results are presented in the supplementary materials). 
The emission intensities of every Rhodamine B islands in 
the picture can be successfully detected by the DL. It 
should be noted that the emission of the Rhodamine B 
islands is as low as 0.42 nW. The characterization of the 
intensity can be useful for the cell labeling as well as mol-
ecule tracing34. With the same pumping light intensity, 

this light profile can also reveal the concentration of the 
dye molecules by comparing its emission light intensity, 
which is helpful to provide a new source of information 
in the fluorescence-based microscope for biological ap-
plications35.  

Conclusions 
In summary, we studied the inverse sensing method 
based on the CNN DL for optical detection in a specific 
environment. The accuracy can go up to 100% in our 
experimental conditions, which means this method is as 
accurate as the instruments to collect the dataset. This 
new concept opens a gate to a completely new design 
strategy in many fields including advanced manufactur-
ing36, data security37, self-driving car sensing38, space 
technology, and biological characterization39. The ability 
to characterize the light beam remotely offers a fast and 
automated way to monitor high power laser and decode 
optical signals without an interception, which are very 
useful for in situ ultra-fast pulsed laser research and de-
cryption of optical signals in an undetected manner. 
Furthermore, the reconstruction of the light beam leads 
to passive laser detection systems, which can reduce the 
blind area and extend the observation “out-of-view”. As 
this methodology can be flexibly integrated without add-
ing any components into the light path, its compact fea-
ture is also much favorable for future applications, in-
cluding the integrated photonics40–42. 
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