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Laser direct writing and characterizations of
flexible piezoresistive sensors with
microstructures
Chenying Zhang1, Wei Zhou1*, Da Geng1, Cheng Bai1, Weida Li1,2,
Songyue Chen1*, Tao Luo1, Lifeng Qin1 and Yu Xie1

Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure
sensors, which are inadequate in the most used molding method. Herein, laser direct writing (LDW) method is proposed
to fabricate flexible piezoresistive sensors with microstructures on PDMS/ MWCNTs composites with an 8% MWCNTs
mass fraction. By controlling laser energy, microstructures with different geometries can be obtained, which significantly
impacts the performances of  the sensors.  Subsequently,  curved microcones with excellent  performance are fabricated
under parameters of f = 40 kHz and v = 150 mm·s-1. The sensor exhibits continuous multi-linear sensitivity, ultrahigh ori-
ginal  sensitivity  of  21.80 % kPa-1,  wide detection range of  over  20 kPa,  response/recovery time of  ~100 ms and good
cycle stability  for  more than 1000 times.  Besides,  obvious resistance variation can be observed when tiny pressure (a
peanut of 30 Pa) is applied. Finally, the flexible piezoresistive sensor can be applied for LED brightness controlling, pulse
detection and voice recognition.
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Introduction
With the development of flexible electronics, biomedical
tests, intelligent robots, internet of things and so on, flex-
ible  pressure  sensors  have  received  extensive  attention
due  to  the  important  roles  played  in  signal  acquisition
and  conversion1−15.  According  to  responding  signals,
flexible pressure sensors can be divided into piezoresist-
ive  sensors3−6,  capacitive  sensors7−9,  piezoelectric  sen-
sors10,11 and  triboelectric  sensors12,13. Among  these  flex-
ible pressure sensors, flexible piezoresistive sensors have
advantages  including  simple  structures,  high  sensitivity,

short response time, and so on6,16,17.  Besides,  continuous
emerging  of  advanced  materials  including  metallic
nanowires5,18−20,  carbon  nanotubes2,3,21,22,  graphene6,23−25

and  MXenes4,26,27 benefits the  performances  of  piezores-
istive  sensors.  Consequently,  flexible  piezoresistive
sensors with  excellent  performances  have  been  increas-
ingly investigated.

It  has been reported that  the performances of  flexible
piezoresistive sensors can be remarkably improved by in-
troducing microstructures on substrates6,17,21,23,28−32. Up to
now, the molding method has been regarded as the most 
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efficient and widely-used method for fabricating flexible
sensors  with  microstructures.  For  example,  Park  et  al.21

fabricated an  electronic  skin  (E-skin)  with  microstruc-
tures by patterning the composites of polydimethylsilox-
ane  (PDMS)  and  multiwall  carbon  nanotubes  (MW-
CNTs) with etched silicon molds. Bae et al.23 fabricated a
PDMS piezoresistive  sensor  with  hierarchical  micro-
structures  using  an etched and thermal  oxidized copper
mold.  Inspired  by  skin  epidermis  microstructures,  Pang
et  al.28 developed  a piezoresistive  sensor  by  molding
PDMS  with  abrasive  papers  and  subsequently  coating
with  reduced  graphene  oxide  (rGO).  Nie  et  al.29 fabric-
ated a  piezoresistive  E-skin with hierarchical  mountain-
ridges microstructures by patterning PDMS on a banana
leave. However, the molding method is mainly limited to
the formation of microstructures for materials with relat-
ively low  viscosity  (e.g.  pure  PDMS),  which  is  inad-
equate  for  solid  materials  (e.g.  MXenes  and  porous
graphene) and  materials  with  high  viscosity  (e.g.  com-
posites of CNTs at a high mass fraction).

In  this  paper,  a  laser  direct  writing  (LDW)  method
was  proposed  to  fabricate  flexible  piezoresistive  sensors
with microstructures using a PDMS/MWCNTs compos-
ite (MPC) of an 8% MWCNTs mass fraction. Laser pro-
cessing has  advantages  including  high  fabrication  effi-
ciency, low processing cost and high dimensional resolu-
tion33−37. Subsequently,  surface  geometry  of  microstruc-
tures  can be adjusted by controlling laser  energy,  which
significantly  influenced  the  performances  of  flexible
piezoresistive sensors. When laser parameters were set to
be f = 40 kHz and v = 150 mm·s-1, curved cone-like mi-
crostructures can  be  obtained.  This  sensor  showed  ul-
trahigh sensitivity  (21.80 % kPa-1),  wide  detection range
(over  20  kPa),  short  response/recovery  time  (~100  ms),
high resolution (a peanut for 30 Pa) and good cycle sta-
bility  (1000  times).  Finally,  this  sensor  was  applied  in
LED brightness controlling, pulse detection and voice re-
cognition. 

Materials and methods
 

Material preparation
MWCNTs were bought from Nanjing XFNANO Materi-
als  Tech.  Co.,  Ltd.  The  specific  parameters  of  the  CVD
MWCNTs were:  external  diameter  of  10~20 nm,  length
of  10~30  μm,  purity  of  more  than  95%,  tap  density  of
0.22 g/cm3, true density of ~2.1 g/cm3 and electrical con-
ductivity  of  more  than  100  S/cm.  The  morphology  of
MWCNTs was imaged by a field emission scanning elec-

tron microscope  (FESEM)  (SUPRA55  SAPPHIRE,  Ger-
many) and  shown  in  Fig.  S1(a)  (see  Supplymentary  in-
formation).  PDMS  (SYLGARD  184)  and  the  curing
agent  were  supplied  by  Dow  Corning  Co.  Ltd,  USA.
Firstly, PDMS was uniformly mixed with curing agent at
a  mass  ratio  of  10:1.  Subsequently,  MWCNTs  were
gradually added into PDMS under a continuous stirring
to  obtain  uniform  mixture  of  an  8%  MWCNTs  mass
fraction. Next, the mixture was degassed for 10 minutes,
uniformly coated on a 1 mm thick glass sheet and cured
at  75  °C  for  1  hour.  Finally,  the  cured  MPC was  peeled
off from the glass. The morphologies of PDMS and MPC
were  imaged  by  a  scanning  electron  microscope  (SEM)
(JSM-IT500A, Japan), as shown in Figs. S1(b)−(c). 

Mechanical characterizations
The  mechanical  properties  including  Youngs  modulus
and  lateral  contraction  of  both  PDMS  and  MPC  were
evaluated  by  a  tensile  experiment.  One  end  of  a  testing
sample  was  fixed  with  a  clamp  and  another  end  was
stretched with  a  slider.  The  stretching  force  was  meas-
ured  by  a  force  meter  (Handpi  HP-5N,  China)  and  the
size of the testing sample was measured by a digital ver-
nier caliper.  Detailed  evaluations  of  mechanical  proper-
ties are provided in Supplementary information S2. 

Laser processing and morphology observation of
microstructures
An ultraviolet  (UV) laser  marking  machine  (SEAL-355-
10S,  JPT,  China)  was  employed  for  LDW  of  MPC.  The
basic parameters of the UV laser were shown in Table S1.
The  experimental  parameters  for  LDW  were  shown  in
Table  S2.  The  surface  morphologies  of  microstructures
were characterized by a SEM and a super deep scene 3D
microscope (VHX5000, KEYENCE, Germany). 

Design and assembly of flexible piezoresistive
sensor
Flexible  piezoresistive  sensor  consists  of  PI  (polymide)
tapes,  interdigital  electrodes  and  a  MPC  substrate,  as
shown in Fig. 1. Firstly,  a  Au film of  50  nm was  depos-
ited on a PET (polyethylene terephthalate) film of 50 μm
using  a  magnetron  sputtering  apparatus  (EXPLORER-
14,  USA).  Secondly,  the  Au/PET  film  was  patterned  to
fabricate  interdigital  electrodes  by  ablating  the  Au  film
using  a  UV  laser  marking  machine.  Then,  the  Au/PET
film and MPC substrate  were  laser  cut  into  certain size.
Finally,  Au/PET  interdigital  electrodes  were  assembled
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with the MPC substrate and packed with 50 μm thick PI
tapes. Typical snake-like (SLI) and concentric-ring shape
(CRI) separation areas  were designed for  fabricating in-
terdigital electrodes.
 

Electrical characterizations
During the experiments, the sensor was fixed on a hori-
zontal  table.  A  pressure  meter  was  employed  to  apply
pressure  to  the  top  surface  of  the  sensor.  The  electrical
signals were measured by a digital source meter (Keithley
2400).  When a pressure was applied,  variation curves of
the sensor including real-time resistance (R-T) and cur-
rent-voltage  (I-V) were  acquired  and  recorded  by  com-
puter.  Besides,  dynamic  time  resistance  (R-T)  curves
were obtained  to  evaluate  the  response  time  and  recov-

ery time of the sensor. 

Applications of flexible piezoresistive sensor
Flexible  piezoresistive  sensor  was  employed  for  LED
brightness controlling,  pulse  detection  and  voice  recog-
nitions.  For  LED  brightness  controlling,  the  sensor  was
connected in series with an LED, and subsequently par-
alleled  with  a  direct  current  power  source  of  12  V.  For
pulse  detection,  the  sensor  was  fixed  on  the  wrist  of  a
tester  to  obtain  resistance  variation  during  pulse  beats.
For  voice  recognition,  the  sensor  was  attached  on  vocal
cords  of  a  tester  to  obtain  resistance  variation  during
speaking. 

Results and discussion
 

Mechanical properties of materials
The thickness of PDMS and MPC decreased with the in-
creasing εz,  as  shown  in Fig. 2(a).  Young's  modulus  of
PDMS  and  MPC  were  evaluated  by σz-εz curves,  as
shown in Fig. 2(b). Young's modulus of MPC was evalu-
ated  to  be  3.31  MPa,  which  was  higher  than  that  of
PDMS  (0.95  MPa). It  can  be  attributed  to  the  higher
mechanical  stiffness  of  MWCNTs  than  that  of  PDMS38.
Nevertheless, MPC  still  showed  good  flexibility  for  fab-
rication of flexible sensor. 

Fabrication of microstructures
The LDW processing system of microstructures is shown
in Fig. 3(a).  A parallel  laser  scanning  strategy  (circles  of
0.3 mm diameter, offsetting of 1 mm and line spacing of
0.05 mm) was proposed for LDW, as shown in Fig. 3(b).
Microstructures were processed under 4 times of ortho-
metric  scanning.  The  schematic  of  laser  processing  is
shown  in Fig. 3(c).  When  a  laser  beam  was  focused  on
the  surface  of  MPC,  the  exposed  material  was  ablated
due  to  photochemistry  and  photothermic  effects.
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Fig. 1 | Design and fabrication of flexible piezoresistive sensor.
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Opto-Electron Adv  4, 200061 (2021) https://doi.org/10.29026/oea.2021.200061

200061-3

 



Notably, the ablation can be controlled by adapting para-
meters  including  laser  repetition  frequency f and scan-
ning  speed v.  Variation  of  laser  power  and  pulse  with
laser  repetition  frequency  is  shown  in  Fig.  S3.  When  a
low laser repetition frequency f and a fast scanning speed
v was adopted, low microstructures were obtained due to
a fairly low laser energy density33,39, as shown in Fig. 3(d).
With the increase of laser repetition frequency f, the laser
power  and  pulse  time  were  accordingly  increased,  and

the laser  spot  was enlarged,  thus increasing the ablation
depth  and ablation  width.  When laser  scanning  speed v
was  decreased,  the  ablation  depth  and  ablation  width
were  also  increased  due  to  higher  energy  density.  The
curved microstructures can be obtained due to the Gaus-
sian distribution of  laser  energy40,  as  shown in Fig. 3(e).
When a higher laser repetition frequency f and a slower
scanning  speed v were  adopted,  a  fairly  high  energy
density  was  obtained,  thus  bringing  about  approximate
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cylindrical  microstructures  with  larger  height,  as  shown
in Fig. 3(f). 

Surface morphology of microstructures
Surface morphologies of microstructures under different
laser  processing  parameters  were  shown  in Fig. 4 and
Fig.  S4.  A  lower  laser  repetition  frequency  or  a  faster
scanning speed resulted in a lower material removal rate,
so  lower  microstructures  were  observed,  as  shown  in
Figs. 4(c) and 4(f).  Increasing  the  laser  frequency  or
decreasing the scanning speed induced an elevated laser
energy density, so curved cone-like microstructures were
observed, as shown in Figs. 4(a), 4(b), 4(d), 4(e), 4(h) and
4(i).  Application  of  a  high  laser  frequency  and  a  lower
scanning speed  resulted  in  an  extremely  high  laser  en-
ergy density,  which  caused  destruction  to  microstruc-
tures. Therefore,  approximate  cylindrical  microstruc-
tures  with  large  height  but  poor  surface  were  observed,
as  shown  in Fig. 4(g).  Besides,  quantities  of  particles

around  microstructures  were  found,  as  shown  in  Figs.
S4(g, h),  which  further  demonstrated  that  the  micro-
structures  were  seriously  destroyed  due  to  an  excessive
high laser energy density.
 

Performances of the flexible piezoresistive sensor
SLI and CRI interdigital electrodes were designed as Figs.
5(a)–5(b).  Subsequently,  the interdigital  electrodes  were
fabricated  by  LDW  and  packed  with  MPC  substrate  by
PI  tapes,  as  shown  in Figs. 5(c)– 5(d).  The  interdigital
electrodes were  electrically  connected  by  microstruc-
tures over the separation area.  Near the separation area,
electrical current flow along the path of interdigital elec-
trode 1→ microstructure i→ substrate→ microstructure
j→ interdigital  electrode  2.  The  total  resistance  of  the
sensor Rtotal can be calculated as follow:
 

Rrow =Relectrodes + RCi + RVi

+Rsubstrate + RCj + RVj , (1)
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Rtotal =
1

1
Rrow,1

+
1

Rrow,2
+ · · ·+ 1

Rrow,n

, (2)

where Relectrodes is the  resistance  of  interdigital  elec-
trodes, RCi and RCj are  the  contact  resistance  between
microstructures  and  interdigital  electrodes, RVi and RVj

are the volume resistance of microstructures, Rsubstrate is
the resistance of MPC substance, Rrow, k (k = 1, 2, … , n)
represents resistance of each row. Therein, Relectrodes can
be ignored due  to  the  excellent  conductivity  of  the  gold
interdigital electrodes. Thus the total resistance is mainly
determined by volume resistance and contact resistance.

The equivalent resistance model of flexible piezoresist-
ive sensors is shown in Figs. 5(e)–5(f).  When a pressure
was  applied,  the  MPC  substrate  was  deformed  and  the

crosslink  state  of  MWCNTs  became  closer21, which  de-
creasing RVi, RVj and Rsubstrate.  Besides,  the  contact  area
between  microstructures  and  interdigital  electrodes  was
increased,  thus significantly decreased RCi and RCj.  As a
result, Rtotal decreased with  the  increasing  pressure  ap-
plied.  Further,  sensitivity S of  flexible  piezoresistive
sensors was defined as followed: 

S = d(ΔR/R0)× 100%
d(ΔP)

, (3)

where  ΔP is  the  variation  in  pressure  applied  on  the
sensor, R0 is  the  resistance  of  flexible  piezoresistive
sensor  without  pressure,  and  ΔR is  the  variation  of
sensor  resistance.  The  units  of  ΔP, R0 and  ΔR are  kPa,
kΩ and kΩ, respectively.

Sensitivity  properties  of  the  sensors  processed  at
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different laser parameters are shown as Fig. 6(a) and Fig.
S5. When laser parameters were set to Param 7 (f = 45 kHz
and v = 100 mm·s-1), the sensor demonstrated low sensit-
ivity,  which can be  attributed  to  the  poor  morphologies
of the microstructures.  When scanning speed was set  to
150  mm·s-1 (Param  2,  Param  5  and  Param  8),  sensors
showed significantly  higher  sensitivity  and  wider  detec-
tion range than the planar one. It can be concluded that
the  curved  cone-like  microstructures  brought  obvious
variation in  contact  areas  under  pressure,  and  the  de-
formation of microstructures increased with the increase
of pressure.  Especially,  when  laser  processing  paramet-
ers were set to Param 5 (f = 40 kHz and v = 150 mm·s-1),
the  sensor  exhibited  the  highest  original  sensitivity  of
21.80 % kPa-1 and a wider detection range of over 20 kPa,
which was  employed  for  further  experiments.  The  per-
formance comparison between sensors with different de-
signed interdigital electrodes was shown in Fig. 6(b). The
original resistances of sensors with CRI and SLI interdi-
gital  electrodes were set  through a precompression.  The
resistances  of  both  sensors  showed  similar  trends  with
ΔP.  Namely,  the  shape  of  isolation  areas  in  interdigital
electrodes  hardly  affected  the  sensitivity  of  flexible
piezoresistive sensors.  In  view  of  the  processing  effi-

ciency of  interdigital  electrodes,  SLI  interdigital  elec-
trodes  were  adopted for  further  experiments.  Properties
of  the sensors  fabricated with Param 5 and packed with
SLI  interdigital  electrodes  were  shown  in Figs. 6(c) and
6(d).  As  shown in Fig. 6(c),  this  sensor  showed  obvious
and  multi-linear  resistance  variation  with  increasing
pressure,  which  indicated  good  sensitivity.  As  shown in
Fig. 6(d), this sensor showed linear I-V curves under dif-
ferent pressure, which indicated good resistance stability.
When dynamic load was applied, the resistance response
was  shown in Fig. 7 and  Video  S1.  Under  stepped  load,
the sensor showed obvious resistance variation, as shown
in Fig. 7(a). Besides,  resistance variation can also be ob-
served  while  tiny  pressure  (a  peanut,  ~30  Pa)  was
dropped,  and  response  time  and  recovery  time  were
~100  ms,  as  shown  in Fig. 7(b). Figure 7(c) showed  the
cycle stability of the sensor at 7 kPa, the resistance vari-
ation kept stable after 1000 cycle times.

Comprehensive  comparisons  between  flexible-
piezoresistive  sensor  in  this  work  and  references  were
shown in Fig. 8 and Table S3. In these references, sensit-
ivities  were  also  defined  by  Eq.  (3),  and  these  sensors
showed either high original sensitivity but low detection
range  or  wide  detection  range  but  low  sensitivity.
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Moreover,  some  flexible  piezoresistive  sensor  showed
obvious  nonlinear  or  discontinuous  sensitivity  within
certain pressure range6. In comparison of references de-
fining sensitivity by Eq. (3), the units were unified to be
“%  kPa-1”  and  our  sensors  showed  promised  sensitivity
properties (21.80, 6.42 and 1.95 % kPa-1 in range of 0~1,
1~5  and  5~20  kPa,  continuous  multi-linear)  compared
with references (ref.4: ~25, ~10, ~0.8 % kPa-1 and ~0.3 in
the  range  of  0~2,  2~6,  6~10  and  10~35  kPa;  ref.6:  8.36
and 0.028 % kPa-1 in the ranges of 0~8 and 30~200 kPa,
but  nonlinear  from 8~30  kPa;  ref.23:  0.04  % kPa-1 in  the
range  of  0~40  kPa;  ref.30:  exponent  damped  sensitivity

y = 70.86exp(-1.15x) in the range of 0~5 kPa; ref.41: 5.54,
0.123, 0.0048 % kPa-1 in the ranges of 0~10, 10~100 and
100~800  kPa).  Besides,  the  proposed  LDW  method  is
simple, low cost and universal to a broad range of materials. 

Applications of the flexible piezoresistive sensor
The  sensor  was  applied  for  LED  brightness  controlling,
pulse  detection  and  voice  recognition. In LED  bright-
ness controlling, as shown in Fig. 9(a) and Video S2, the
initial resistance  of  sensors  was  high,  so  the  series  con-
nected LED couldn’t  be lit  up before pressing.  The LED
light up at pressing the sensor with a finger, as a result of
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reduced sensor resistance. When the finger moved away,
the resistance recovered and the LED turned dark again.
As  shown  in Figs. 9(b)−9(d) and  Video  S3,  a  flexible
piezoresistive sensor was attached on the wrist of a male
tester of 24 years for detecting wrist pulse. During pulse
beat, the resistance of the sensor decreased due to blood
pressure  on  wrist  surface,  and  the  recorded  wave  and
magnified  signal  were  shown  in Figs. 9(b) and 9(c).
Three  characteristic  peaks  called  percussion  wave  (P-
wave), tidal wave (T-wave), and diastolic wave (D-wave)
can be observed, which indicates the incident wave from
the heartbeat,  reflected wave from the hands and reflec-

ted  wave  from  the  lower  part  of  the  body,
respectively42−45.  The  peaks  of  P-wave  and  T-wave  (P1
and P2) were respectively related to the systolic and dia-
stolic blood pressure. The delay time ΔT between P1 and
P2  was  employed  to  estimate  arterial  stiffness.  Herein,
ΔT was  estimated  to  be  ~280  ms,  which  is  consistent
with  literature  data  of  a  healthy  male  in  his  20s44.  The
application  of  the  sensor  for  voice  recognition  was
shown in Figs. 9(e)–9(g) and Video S4.  When the tester
pronounced  letters,  resistance  of  the  sensor  attached  to
vocal cords changed with the shock energy. For a certain
letter,  resistance  changes  were  consistent  during  test
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several  times,  as  shown  in  Video  S4.  For  the  different
vowels,  the  resistance  variations  varied  differently,  both
in tendencies and amplitudes. 

Conclusions
LDW  method  was  applied  for  the  flexible  piezoresistive
sensor  fabrication,  with  microstructures  on  PDMS/
MWCNTs composites  of  an  8%  MWCNTs  mass  frac-
tion  and  interdigital  electrodes  on  an  Au/PET  film.  By
controlling  laser  energy,  microstructures  with  different
geometries were  obtained,  which  modulated  the  per-
formances  of  flexible  piezoresistive  sensors.  When  laser
processing parameters were set to f = 40 kHz and v = 150
mm·s-1,  the  obtained  curved  microcones  rendered  the
sensor continuous  multi-linear  sensitivity,  with  ul-
trahigh original sensitivity of 21.80 % kPa-1 and wide de-
tection range of more than 20 kPa. The shape of the sep-
aration areas in interdigital electrodes hardly affected the
sensitivity  of  the  sensors.  In  dynamic  responding,  the
sensors  showed  short  response/recovery  time  of  ~100
ms,  high resolution to tiny pressure (a  peanut of  30 Pa)
and excellent  cycle  stability  (1000 times).  Therefore,  the
flexible piezoresistive sensor was applied in LED bright-
ness  controlling,  pulse  detection  and  voice  recognition.
Additionally,  the  LDW  method  exhibites  advantages  of
simple process, high efficiency, low cost and general ap-
plicability  for  most  materials.  Our  work  provides  a
simple  and  versatile  method  for  fabricating  flexible
piezoresistive sensors using solid materials (e.g. MXenes
and  porous  graphene)  or  materials  with  high  viscosity
(e.g. composites of CNTs at a high mass fraction), where
each part of the sensor including the microstructures and
the  interdigital  electrodes  can  be  efficiently  fabricated
without the mask.
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