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Abstract: Beam deflectors are important optical elements which can control the propagation direction of the beam in 
free space. However, with the development of miniaturization of the optical systems, conventional reflector-based 
mechanical beam deflectors confront a huge challenge due to their large sizes and incompatibility to the device in-
tegration. Here we propose an all-dielectric flat metasurface beam deflector which is composed of a single layer ar-
ray of TiO2 nanoantennas resting on a fused-silica substrate. Numerical simulations are performed to demonstrate 
that the proposed deflectors are able to efficiently deflect the incident beam for different angles with transmission ef-
ficiency higher than 80% at visible frequencies. This ultrathin all-dielectric metasurface deflector may have great 
potential applications in integrated optics. 
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1  Introduction 
Beam deflectors are basic optical elements which can 
control the propagation direction of the beam in free 
space and play important roles in many optical systems. 
The traditional mechanical beam deflectors are based on 
the combination of mirror reflectors which make the 
system complex and bulky. A few years ago, several 
thin-film plasmonic beam deflectors using metallic 
nanoslits was proposed[1-2]. Limited by the strong ohmic 
damping caused by surface plasmon polaritons (SPPs) at 
the interface between metal and dielectric medium, the 
plasmonic beam deflectors have low transmission effi-
ciencies at specific deflection angle, typically lower than 
50%. 

Recently, metasurfaces, also known as two-dimen-
sional metamaterials, have attracted significant atten-
tions due to their ultrathin thickness and efficient con-
trolling of amplitude, phase and polarization of beams 
[3-5]. According to Huygens principle, the electromagnetic 
metasurfaces can be designed to achieve arbitrary wave-
front. Due to the remarkable ability of full 2 phase con-
trol, metasurfaces are widely used in lensing[7-10], holo-

grams[11-14], wave plates[15] and other applications[16-21]. In 
previous studies, metasurfaces are mainly designed using 
metallic resonant structures. Although metasurfaces us-
ing metallic resonant structures showed good behaviors 
in near-infrared wavelengths proposed in previous stud-
ies, their efficiencies in low band of visible wavelengths 
remain dissatisfactory[6, 22,-23]. To overcome the loss issue, 
metasurfaces using dielectrics, such as silicon[21] and tita-
nium dioxide (TiO2)[24], are proposed and employed in 
novel optical devices. For example, metalenses with 
high-aspect-ratio TiO2 metasurface are designed and 
demonstrated in visible wavelengths, which exhibit great 
imaging performances including their high numerical 
apertures (NA) and high transmission efficiencies[24]. 

In this paper, all-dielectric metasurfaces composed of 
TiO2 nanoantennas, which are able to efficiently manip-
ulate the phase of incident light, are proposed to imple-
ment the deflection of visible light. As numerical demon-
strations, we design several metasurface beam deflectors 
with deflection angles of 15°, 30°, 45° and perform fi-
nite-difference time-domain(FDTD) simulations. At 
visible wavelengths of 450 nm, 532 nm and 633 nm, the 
all-dielectric metasurface beam deflectors exhibit accu-
rate deflection performances with transmission efficien-
cies more than 80%, which are higher than previously 
reported metal-based metasurface devices[25-28]. This 
all-dielectric metasurface beam deflector may have po-
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tential applications in manipulating light propagation in 
high-integration optical systems. 

2  Principle and design 
Fig. 1(a) shows the schematic diagram of the unit cell 
structure, consisting of a cuboid TiO2 nanoantenna and a 
square SiO2 substrate. Here, we use TiO2 as the constitu-
tion material of the nanoantenna because TiO2 has high 
refractive index, low surface roughness and very low loss 
in the visible-light region. The length along x, y and 
z-axes of TiO2 nanoantenna are defined as L, W and H, 
respectively, while the period of the unit cell is S. As 
shown in Fig. 1(b), the TiO2 nanoantenna can rotate with 
an orientation angle θ to produce a different phase delay. 
Here, the TiO2 nanoantennas are considered as bire-
fringent elements and the Jones transfer matrix can be 
used to model electrometric response of each TiO2 
nanoantenna. If the nanoantenna rotation angle =0, the 
Jones matrix J0 has the form 
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where tx and ty are the transmission coefficients of inci-
dent light with polarization parallel to x and y-axes, re-
spectively, and  is the phase retardation between x and 
y-components. Applying the optical rotation matrix on 
the Jones matrix, we can get a new transfer matrix T[28]. 
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For the incident light with polarization inE , calcu-
lated by the transfer matrix T, the output electric field  
is [8, 29-30] 

i
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where in |E R  and in |E L denote inner products. In 

case of tx=ty =1, = and the incident light with L state, 
the output field develops into 

i2
out eE R .             (4) 

From Eq.(4) we can get the relationship between the 
phase shift  and the rotate angle : 

Δ 2  ,                (5) 
For the left-circularly polarized (LCP) and 
right-circularly polarized (RCP) incident light, 

i 2[( e ) / 2]x yt t  is defined as the polarization conversion 

efficiency (PCE). We can infer that when tx=ty =1 and 
=, the PCE equals to 100% and phase shift of the light 
passing through the nanoantennas satisfies Eq. (5), which 
indicates the phase shift of incident light can be con-
trolled by rotating the nanoantenna. 

To implement deflection of light at a specific angle , 
the phase profile (x) of the deflector at position x 
should take the form [1] 

Δ ( ) 2 π Δ (0) (2π / ) sinx n x        ,     (6) 
where n is an integer, x is the x-coordinate of the 
nanoantenna, (0) is the phase profile at x=0 and we 
assume the rotation angle =0 at this position, and  is 
the free-space wavelength.  

According to Eq.(5) and Eq.(6), in order to realize the 
deflection function for an angle , (x)−(0) should 
satisfy the relationship 2=(x)−(0), and each 
nanoantenna should be rotated by an angle 

π (π / ) sinn x      .            (7) 
Therefore, the key point to manipulate deflection is to 
determine the structural parameters and positions of the 
nanoantennas. 

3  Simulation and discussion 
To evaluate PCE, a nanoantenna unit cell with periodic 
boundary condition is simulated by finite-difference 
time-domain (FDTD) method. A LCP beam passes 
through the SiO2 substrate, and then is modulated by the 
TiO2 nanoantennas array. The parameters (n-k) of TiO2 
are taken from reference [31]. Three nanoantennas oper-
ating at different wavelength ranges are designed with 
the following structural parameters: nanoantenna 1: 
S=230 nm, L=145 nm, W= 60 nm, H=500 nm; 
nanoantenna 2: S=270 nm, L=210 nm, W=70 nm, H=550 
nm; nanoantenna 3: S=320 nm, L=270 nm, W=105 nm, 
H=600 nm. As shown in Fig.2, the PCEs of three differ-
ent nanoantennas are all higher than 90%, and the PCE 
of each structural parameter at the wavelengths of 450 
nm, 532 nm and 633 nm is 94.1%, 94.3% and 91.3%,  

Fig.1  (a) Front view of the beam deflector unit cell, showing unit

cell periodicity S, nanoantenna width W, length L and height H. At

the wavelength of 450 nm, S=230 nm, L=145 nm, W=60 nm, H=500

nm; At the wavelength of 532 nm, S=270 nm, L=210 nm, W=70 nm,

H=550 nm; At the wavelength of 633 nm, S=320 nm, L=270 nm,

W=105 nm, H=600 nm. (b) Cross-section of single nanoantenna

with rotation angle . 
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respectively, indicating that the LCP light is almost com-
pletely converted into RCP light. The dips in PCE simu-
lation results are caused by the magnetic and electric 
resonances and they can hardly have influence on the 
deflection behaviors as they are far away from the chosen 
operation wavelengths. The simulation results of PCE are 
well consistent with the theoretical expectation. 

Next, the full-wave FDTD simulations with a bounda-
ry of perfect matched layers (PML) are employed to 
calculate the near-field and far-field electromagnetic re-
sponses of the metasurface deflectors. The simulated 
near-field phase distributions of electric field 
corresponding to deflectors designed for the angles of 15°, 
30° and 45° at three wavelengths of 450 nm, 532 nm and 
633 nm are shown in Figs. 3(a)~3(c). It can be obviously 
observed that the deflections take place after the incident 
light passing through the TiO2 nanoantennas array. The 
corresponding deflected angles are around 15°, 30° and 
45°, respectively, which is coincident well with the 
theoretical design angle. It is worth mentioning that a 
symmetrical result (deflect to the other direction with the 
same angle) could be achieved under the incidence of a 
RCP light.  

Figs. 4(a)~4(c) present the normalized far-field trans-
mitted power distributions as a function of deflection 
angle. As expected, the highest peaks of the spectra which 
represent the deflection angles are located at the angles of 
about 15°, 30° and 45°. The optical transmittances of 
each deflector are also simulated and the transmittances 
are 88.2%, 86.8% and 71.3% for 15°, 30° and 45° at wave-
length of 450 nm; 86.7%, 86.4%, 69.7% for 15°, 30° and 

45° at wavelengths of 532 nm and 89.3%, 80.6%, 62.0% 
for 15°, 30° and 45° at the wavelength of 633 nm. The 
average transmittance is over 80% and the designed de-
flectors show low-loss performance with expectation. 

Generalized Snell’s law and Huygens-Fresnel principle 
can help to explain the properties of our deflectors. The 
propagation of the light with phase discontinuities fol-
lows the generalized Snell’s law [3, 32]:  

0
r i i i

d
sin( ) sin( )

2π d
n n

x

     and 

0
t t i i

d
sin( ) sin( )

2π d
n n

x

    , 

where i, r and t are practical propagation angles of 
incident, reflection and refraction, ni and nt are the re-
fractive indices of the two media, d is the phase discon-
tinuities and dx is the distance between two crossing 
points of adjacent light paths. Because of the existence of 
abrupt phase change at the boundary, in which case 
d/dx doesn’t equal to zero, the light wave appears 
anomalous refraction and the incident light is bent ac-
cording to the designed phase. In Huygens-Fresnel prin-
ciple, as the deflector is illuminated with plane wave, 
each point of the plane wavefront can be regarded as a 
point source of spherical secondary wave with designated 
initial phase and the form of the wave at later time is de-
termined by the sum of these secondary waves. Hence, as 
a result of superposition of these spherical secondary 
waves, the plane wave is formulated in the far-field, coin-
ciding with the generalized Snell’s law. 

Fig.2  The PCE of the single nanoantenna. (a) S=230 nm, L=145 nm, W=60 nm, H=500 nm. (b) S=270 nm, 

L=210 nm, W=70 nm, H=550 nm. (c) S=320 nm, L=270 nm, W=105 nm, H=600 nm. 
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4  Conclusions 
In summary, one type of visible light beam deflector 
composed of TiO2 nanoantennas array is designed and 

numerically demonstrated to exhibit high transmission 
efficiency by using phase discontinuities. The perfor-
mances of various output angles are investigated at three 
wavelengths corresponding different deflectors. FDTD 
simulation results show that the proposed deflectors are 

Fig.3  Simulated near-field phase distributions of electric field for 15°, 30° and 45° (from left to right) at the wave-

lengths of (a) 450 nm with S=230 nm, L=145 nm, W=60 nm, H=500 nm, (b) 532 nm with S=270 nm, L=210 nm,

W=70 nm, H=550 nm, (c) 633 nm S=320 nm, L=270 nm, W=105 nm, H=600 nm. 

Fig.4  Simulated far-field transmitted power distributions as the functions of angle at the three wavelengths. (a) Blue lines at

the wavelength of 450 nm. (b) Green lines at the wavelength of 532nm and (c) red lines at the wavelength of 633 nm. Solid

lines, short dash dot lines and short dot lines represent the deflection angles designed for 15°, 30° and 45°, respectively. 
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in excellent agreement with our theoretical prediction. 
The phase discontinuity presents a simple and flexible 
method to design the phase properties of a deflector. The 
designed deflector is believed to show potentials in the 
applications of integrated optics. 
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