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Abstract: We present a method of generating high dynamic range (HDR) radiance maps from a single low dynamic 
range (LDR) image and its camera response function (CRF). The method first models and estimates the inverse 
CRF and then multiplies the inverse CRF by a weighting function to make it smooth near the maximum and minimum 
pixel values, and finally conducts the smooth inverse CRF on the input LDR image to generate HDR image. In the 
method, the inverse CRF is estimated using one single LDR image and an empirical model of CRF, based on 
measured RGB distributions at color edges. Unlike most existing methods, the proposed method expands image 
from both high and low luminance regions. Thus, the algorithm can avoid the artifacts and detail loss in dark area 
which results from extending image only from bright region. Extensive experimental results show that the approach 
induces less contrast distortion and produces high visual quality HDR image. 
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1 Introduction 
High dynamic range (HDR) imaging has attracted more 
and more attention not only from academia but also from 
industry. Researchers have proposed a number of meth-
ods to acquire HDR image. The most common one is 
multi-exposure, which captures multiple different expo-
sure low dynamic range (LDR) images of the same scene 
and generates one HDR image by these images. However, 
the vast majority images captured in the last few decades 
only have one exposure. Thus, in recent years, researchers 
begin to focus on generating HDR image from single 
LDR image. They have made some progress and pre-
sented several algorithms. These algorithms can be classi-
fied into linear or nonlinear, global model or local model.  

Daly and Feng [1,2] presented two methods for 
decontouring for high contrast displays, and these meth-
ods can generate medium dynamic range image and re-
move contouring in the transition areas, without particu-
larly emphasizing on overexposed and underexposed 
areas. Landis [3] proposed one of global expansion meth-
ods, which is based on power function, and is used pri-
marily for relighting digital three-dimensional models 
from images. Akyuz et al. [4] performed a series of psy-

chophysical experiments to investigate how well LDR 
content is supported by HDR displays. The experiments 
were run to evaluate the effect of displaying tone mapped 
image, single exposure image, and HDR image on HDR 
screen. They suggested that linear expansion is compe-
tent for high-quality LDR images to displaying on HDR 
screen. Masia et al. [5] proposed another global method 
used for overexposed LDR images by gamma expansion. 
They conducted a study to predict the gamma value, in 
which users were asked to adjust manually the gamma 
value. This expansion method may fail to utilize the dy-
namic range to its full extent. Huo et al. [6] proposed an 
expansion method based on human vision system (HVS). 
This approach takes local luminance information into the 
global expansion using the local model of HVS. 

For local methods, images are always classified into 
overexposed/non-overexposed areas or diffuse/specular 
parts, and different schemes are applied to expand each 
portion. Meylan et al. [7,8] and Didyk et al. [9] attempted to 
expand different regions of the LDR image by identifying 
or classifying the image into different parts such as high-
lights, and light sources etc. The main idea of Meylan et 
al. ’s method is to detect the diffuse and specular parts of 
the image and to expand them using different linear 
functions. Didyk et al. [9] classified a scene into three 
components: diffuse, reflections, and light sources, and 
enhanced only reflections and light sources. This method 
is semiautomatic.  
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Banterle et al. [10,11] and Rempel et al. [12] focused on 
dealing with overexposed areas using a guidance way to 
direct the expansion of these areas. Banterle et al. ’s 
method uses an inverted tone mapping operator for ex-
panding the dynamic range combined with a smooth 
field for the reconstruction of lost information in over-
exposed areas. This algorithm provides a general solution 
for visualization of LDR image on HDR monitors and 
IBL. Rempel et al. ’s algorithm first removes artifacts, and 
then linearizes the signal using an inverse gamma func-
tion, and finally employs a brightness enhance function 
(BEF) to enhance brightness in highlight regions. 
Kovaleski and Oliveira [13] proposed an improvement 
version of Rempel et al. ’s method, which accomplishes 
Gaussian blur and edge stopping by a bilateral filter. 

Wang et al. [14] proposed a user-based approach, in 
which the texture of overexposed areas is repaired with 
similar clear texture in correct exposed areas. The whole 
process was termed hallucination, the first step is to line-
arize the signal, and then each overexposed region is de-
tected and fitted with an elliptical Gaussian lobe. Huo et 
al. [15,16] first recovered the information in overexposed 
areas by highlight removal technique, and then expanded 
the image using a linear function. 

The HDR image type is divided into single exposure 
HDR and multi-exposure HDR. The multi-exposure 
HDR uses many frames with different exposure time to 
fuse the HDR image, so the image fusion method is the 
key technology of HDR image. Guan et al. [17] proposed a 
HDR image fusion algorithm based on the Laplace Pyr-
amid. They chose the fusion strategy based on regional 
average gradient for the top layer of the long exposure 
image and short exposure image and then the remained 
layers which represent the edge feature information are 
based on regional energy. Florea et al. [18] proposed a log-
arithmic type image processing (LTIP) model, the per-
forming exposure merging under the LTIP model is 
equivalent to standard irradiance map fusion. Narahari et 
al. [19] provided a system to align and merge differently 
exposed digital images to create a HDR image. In the 
system, the captured image is operated in the 
hue-saturation-intensity (HIS) color space, the saturation 
component in the HSI color space is used to pick the col-

or purity of pixels and intensity channel is used to weigh 
the sharpness of pixels of each of the differently exposed 
captured images.  

Most of existing algorithms focus on expanding the 
image only from highlight region, which may reduce the 
visible details in dark region. Furthermore, the existing 
ones do not take the imaging mechanism into considera-
tion. 

In this paper, we propose a method of HDR image 
generation from single LDR image. The algorithm is 
based on the estimated inverse camera response function 
(CRF) which maps the nonlinear color distributions of 
edge regions in LDR image into linear distributions in 
image irradiance. The main contributions of the pro-
posed method consist in two aspects: the smoothness 
function used in the estimation of inverse CRF and the 
utilization of the inverse CRF in HDR image generation. 
The first one makes the estimated inverse CRF curve 
more smooth, thus takes full advantage of the correct 
exposed pixels and suppresses the over- and under- ex-
posed pixels, and reduces the contour artifacts in HDR 
image. The second one inverse the imaging procedure to 
recover the HDR irradiance which makes the produced 
HDR image more nearly to natural scene.   

The remainder of this paper is arranged as follows. 
Section 2 describes the proposed algorithm. The imple-
mentation details and extensive experimental results are 
discussed in Section 3. Conclusions are given in the last 
section. 

2 Algorithm description 
The proposed algorithm generates HDR image from sin-
gle LDR image depending on inverse CRF reconstruction. 
The main steps include: inverse CRF estimation, inverse 
CRF smoothness, and HDR image generation. The ap-
proach first models and estimates inverse CRF based on 
the database established by Grossberg et al. [20], and then, 
smoothens the estimated inverse CRF by a weighting 
function, and finally, conducts the inverse CRF on the 
input LDR image to generate HDR image. The flowchart 
of the algorithm is shown in Fig. 1.  

The sub sections 2.1 and 2.2 describe inverse CRF  

Fig. 1  The flowchart of the proposed method. 
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estimation, and sub section 2.3 represents inverse CRF 
smoothness and HDR image generation. The inverse 
CRF is reconstructed using the edge pixels in the LDR 
image based on the Grossberg’s DoRF database and 
EMoR database [20], and the prior probability is empiri-
cally modeled as a Gaussian mixture model. Then, a 
Bayesian framework is formed by combining the likeli-
hood function with the prior model. Finally, the optimal 
inverse CRF is obtained by maximizing the posteriori 
probability (MAP). 

2.1 Edge color distributions 
Because the inverse CRF is reconstructed using the edge 
pixels in the LDR image, the first step is to find and select 
the suitable edge blocks. The edge block includes three 
kinds of image intensities which is called edge triple col-
ors. The radiometric response function f of imaging sys-
tem maps the image irradiance I, which is linearly related 
to scene radiance to the measured intensity B in the im-
age [21]: 

)(IfB  ,                (1) 
Since the CRF is a nonlinear function, the linearly dis-

tributed image irradiances in the edge regions are 
mapped into non-linear distributed image intensities. 
Thus, the inverse camera response function finv should 
transform the image intensities in the edge regions into 
values linearly related to image irradiance. That means 
finv(Bp) should be on the line defined by finv(B1) and 
finv(B2), where Bp is the pixel value of the edge, B1 and B2 
are pixel values of the regions divided by the edge. By 
detecting the eligible edge triple colors {B1, B2, Bp} and 
modeling the total distance D from finv(Bp) to the line 
finv(B1)finv(B2), the inverse response function finv can be 
obtained through finding the optimal solution to mini-
mize the total distance D: 
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Where “×” is the cross product between two vectors; Ω is 
the set of color triples. The edge is detected by Canny 

operator. Fig. 2 shows the detected edges and color triples 
of the input LDR image.  

2.2 Inverse CRF estimation 
To search the optimal solution for minimizing the total 
distance D, the inverse response function finv can be 
modeled as: 

HCff  0invinv ,             (3) 
Where finv0 is the mean inverse camera response of the 
CRFs in EMoR database, H is a matrix whose columns 
are composed of the first 5 eigenvectors of covariance 
matrix constructed by the inverse functions of the CRFs 
in EMoR database, and C is a coefficient matrix which 
can be optimized. 

The prior probability p(finv) is modeled as a Gaussian 
mixture model using the 201 inverse response functions 
in DoRF database.  

),;()( invinv iii fNfp    .         (4) 
The likelihood probability p(finv|Ω) is modeled by 

incorporating the total distance D into an exponential 
function: 

)];(exp[
1

)|( invinv ΩfD
Z

fΩp  .       (5) 

Where Z is a normalization constant, and λ is a variable 
parameter which will be discussed in the following.  

With p(finv) and p(finv|Ω), we can formulate the prob-
lem in a Bayesian framework. The optimal inverse re-
sponse function finv

* is solved as:  
)()|(maxarg invinv

*
inv fpfΩpf  .       (6) 

Taking the log of equation (6), finv
* can be written as:  

)(log);(minarg invinv
*

inv fpΩfDf   .    (7) 
The optimal solution of finv

* is computed by the 
Levenberg-Marquardt method. PCA can be done by ei-
genvalue decomposition of a data covariance (or correla-
tion) matrix or singular value decomposition of a data 
matrix. From equation (3), we know that when finv0 and 
H are known, C is the only unknown coefficient matrix. 
So when using PCA dimension reduction model, we aim 
to compute the optimal PCA dimension reduction coeffi-
cient matrix C, other than the response function finv. For 
RGB image, three color channels can be treated separately, 

Fig. 2  Observation set of color triples. (a) Input image. (b) The detected edge and color triples. 

(c) The original image with color triples. 

(a)  (b) (c)
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so the response functions of the RGB channels differ 
from each other. Fig. 3 shows an illustration of estimated 
inverse response function for RGB image with λ=1000. 

In the experiment, we found that the value of λ influ-
ences the shape of inverse response function. From equa-
tion (7), it is obvious that the optimal solution of finv

* 
depends on the prior probability and the likelihood 
probability simultaneously. The parameter λ is used to 
balance the effect of the prior p(finv) and the likelihood 
p(finv|Ω) for function finv. When λ is larger, the optimal 
solution of finv

* will more rely on the likelihood probabil-
ity. That is to say, finv

* depends on the samples from the 
input LDR image mostly, in this case, the finv

* is less 
smooth and sensitive to noise. On the contrary, when λ is 
smaller, finv

* depends on the prior model mostly and is 
more smooth. However, in this case, finv

* is not so good to 

approximate the real inverse CRF of the imaging device 
which captures the input LDR image. Thus, the selected λ 

Fig. 4  The inverse response curve of input images with different λ values, from top to bottom: input image with edge 

detection, the curves with λ=100, λ=1000 and λ=10000. 
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Fig. 3  The RGB inverse response curve 

estimated from the test image building. 
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value should be a trade-off between the effect of likeli-
hood probability and prior model. We perform the ex-
periments with λ=100, 1000 and 10000. Fig. 4 shows the 
results. 

Fig. 4 shows the estimated inverse response functions 
with different λ values. When λ=100, the effect of image 
samples is less than that of prior model, it is obvious that 
the inverse response functions of RGB channels are 
bonding together. When λ=10000, the effect of image 
samples is more than that of prior model. The tendency 
of three inverse response functions are inconsonant. 
Taking the overall effect into consideration, through the 
experiments, we found that λ=1000 is more suitable in 
our experiments. 

2.3 HDR image generation 
The response function f is monotonic and invertible [22]. 
So rewrite the Equation (1) as: 

)(inv ii BfI  ,               (8) 
Where i denotes pixel position. Letting Bmin and Bmax be 
the minimal and maximal pixel values, N be the number 
of pixels. Because the inverse function finv typically has a 
steep slope near Bmin and Bmax, it is less smooth and 
non-monotonic near these extremes. To solve this prob-
lem, we introduce a weighting function w(B) to make the 
function finv more smooth and reduce the effect of the 
pixels near Bmin and Bmax in HDR image construction. The 
considerable choices of w(B) are Rectangular function, 
Triangular function and Gaussian function.  

Triangular function is a simple hat function, defined 
as: 

)0|,|1max()( tttri  .          (9) 
While applying to pixel values, the function can be 

transformed as follows: 
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Gaussian weighting function is defined as: 
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We use the normal function with μ=0 and σ=1, then 

scale the amplitude and move the symmetric function to 
the range of pixel value. Then the weighting function is: 
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For rectangular function, the operation is simply 
equivalent to multiplying by a coefficient when recover-
ing the high dynamic range irradiance maps. Fig. 5 shows 
the three kinds of weighting functions. 

Combining equation (8) with the weighting function, 
we can easily recover high dynamic range irradiance val-
ues: 
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3 Experimental evaluation 
To evaluate the proposed algorithm, the method is com-
pared with four inverse tone mapping operators, which 
are Banterle et al. ’s ITM [11], Masia et al. ’s gamma expan-
sion [5], Meylan et al. ’s PWL [7], and Rempel et al. ’s 
LDR2HDR [12] respectively. A wide dynamic range of im-
ages are used as test data. Fig. 6 shows a subset of the test 
images. 

3.1 Tone mapped versions 
Because the limitation of medium, HDR images cannot 
be showed here directly. The generated HDR images are 
tone mapped by Reinhard et al. ’s tone mapping operator 
[23] to compare the performance of the algorithms indi-
rectly. Moreover, to analyse the performance of three 
weighting functions, the HDR images obtained using 
different weighting functions are also tone mapped and 
shown in Fig. 7. The metric results of HDR images ob-
tained using different weighting functions are shown in 
Fig. 8. The tone mapped images of five schemes are 
shown in Fig. 9. 

3.2 Image quality metric results 
To assess the performance of five compared methods, a  

Fig. 5  Three kinds of weighting functions. (a) Rectangular. (b) Triangular. (c) Gaussian. 
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novel image quality metric introduced by Adyin et al. [24] 
is chosen to verify the quality of generated HDR images. 
This metric identifies distortions between two images, 
independently of their respective dynamic ranges. The 
metric uses a model of the human visual system, and 
classifies visible changes between a reference and a com-
pared image. The result image generated by the metric is 
a summary image with red, green and blue pixels. The 
authors identify that red pixels mean reversal of visible 
contrast (when contrast polarity is reversed in the com-
pared image with respect to the reference image). Green 

pixels imply loss of visible contrast (when visible contrast 
in the reference image becomes invisible in the compared 
image). Blue pixels denote amplification of invisible con-
trast (when invisible contrast in the reference image be-
comes visible in the compared image). Less blue pixels 
mean few contour artifacts produced during expansion. 
Furthermore, the less green and red pixels indicate the 
better performance of the algorithm. The metric param-
eters are set to the default values: typical LCD, viewing 
distance of 0.5 m, pixel per visual degree 30, and peak 
contrast 0.0025. 

Fig. 7  The tone mapped versions of HDR images generated by the proposed method with different weighting functions.

(a) The tone mapped image with rectangular weighting function. (b) The tone mapped image with triangular weighting

function. (c) The tone mapped image with Gaussian weighting function. 

(a)  (b) (c) 

Fig. 6  Test images. (a) Farm road. (b) Tree. (c) Structure. (d) Tower. (e) Lake. (f) Statue. (g) Path. (h) Library. (i)
Temple. (j) Ancient town. (k) Passageway. (l) Building. (m) Sunset. (n) Sunflower. (o) Teaching building. 

(a) (b) (c)  (d) (e) (f) (g) 

(h) (i)  (j) (k) 

(l)  (m) (n) (o)

Fig. 8  The resulting metric images of the HDR images with different weighting functions. (a) Rectangular weighting

function. (b) Triangular weighting function. (c) Gaussian weighting function. 

(a)  (b) (c) 
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In the comparison, the original LDR images and the 
produced HDR images are used as reference images and 
compared images respectively. To assess the performance 
of three weighting functions, the metric results of HDR 
images obtained using different weighting functions are 
shown in Fig. 8. Meanwhile, a part of metric images of 

five algorithms are shown in Fig. 10.  
Moreover, we use the image quality evaluation indexes, 

such as PSNR (Peak Signal to Noise Ratio) and SSIM 
(Structural Similarity Index), to evaluate the performance 
of HDR images in Table 1. PSNR is most commonly used 
to measure the quality of reconstruction image, and SSIM 

Fig. 9  The tone mapped images of compared methods. The original LDR images are (a) structure, (b) teaching building, (c) 

tower, (d) lake, (e) library and (f) temple. 
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Input 
image 

(a1)  (b1)  (c1) (d1) (e1) (f1)  

(a2)  (b2)  (c2) (d2) (e2) (f2)  

(a3)  (b3)  (c3) (d3) (e3) (f3)  

(a4)  (b4)  (c4) (d4) (e4) (f4)  

(a5)  (b5)  (c5) (d5) (e5) (f5)  

(a6)  (b6)  (c6) (d6) (e6) (f6)  

Table 1  HDR image evaluation by PSNR and SSIM. 

 Structure  Teaching building Ancient town Sunflower  Farm road 

 PSNR/dB SSIM/% PSNR/dB SSIM/% PSNR/dB SSIM/% PSNR/dB SSIM/% PSNR/dB SSIM/%

Banterle 60.9 40.6 61.2 37.5 61.4 81.6 106.4 53.1 67.0 80.6 

Masia 56.6 40.5 63.7 38.8 67.1 82.6 112.9 56.1 72.1 79.8 

Meylan 65.1 30.8 59.3 38.7 62.9 80.3 44.2 40.9 78.9 80.5 

Rempel 54.7 39.3 60.2 39.9 59.9 81.8 67.7 54.9 67.9 80.0 

Ours 70.4 42.1 87.3 49.9 145.3 85.6 118.9 57.6 142.4 84.2 
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is used for measuring the similarity between two images. 
Meanwhile, to analyze the introduced distortion of each 
scheme more intuitively, the percentages of red pixels, 
green pixels, and blue pixels in metric images are com-
puted and displayed in Table 2.  

3.3 Result analyses and discussion 
From Fig. 7, we note that the tone mapped image in Fig. 
7(b) has more details both in the dark and bright regions 
than other two tone mapped images. That means the tri-
angle weighting function is the best one in three func-
tions. Fig. 8 also indicates the same conclusion. The re-
sulting metric image in Fig. 8(b) has less green and red 
pixels compared to other two metric images. This turns 
out that the triangle weighting function introduces less 
contrast distortion than other two weighting functions.  

Because of using the same tone mapped operator, the 
quality of the tone mapped images indirectly represents 
that of the corresponding HDR images. From Fig. 9, re-
ferring to the original LDR images, we find that Banterle 
et al.’s method has better performance in bright regions 
and bad performance in dark areas. The methods by 
Masia, Rempel and Meylan do slightly well in dark re-
gions than in bright regions. Our proposed method 

works well and has better visual quality both in dark and 
bright regions. In Fig. 9, some of the tone mapped ver-
sions of Masia et al. ’s algorithm have obvious artifacts in 
highlight areas. This results from the small key value of 
the input LDR image. In brief, the tone mapped versions 
of HDR images generated by our method has better visi-
bility than that of other methods. 

In Fig. 10, considering the six resulting metric images 
of each algorithm, each one of our metric images has very 
few red, green and blue pixels. That means our method 
induces minimum contrast distortion and fidelity loss. 
According to the metric, the less total pixels of red, green 
and blue indicate the better performance of the algorithm. 
We conclude that the general performance of our method 
is better than other compared algorithms. This is proved 
by the numerical results in Table 2. 

We compare the HDR image quality with two classical 
and practical quality metrics, including PSNR and SSIM 
in Table 1. The reference images are the 5 single input 
images, and the test images are the tone mapped images 
from HDR images using the same tone mapping operator, 
while the HDR images generated from our method and 
the four compared methods. For PSNR and SSIM, a  
higher PSNR generally indicates that the reconstruction 

Fig. 10  The metric results. (a) The original LDR images are ancient town. (b) Building. (c) Farm road. (d) Structure.

(e) Tree. (f) Teaching building. 
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is of higher quality, and also a higher SSIM means the 
higher similarity of two images. From Table 1, we found 
that our method has both highest PSNR and SSIM be-
tween five methods.  

Table 2 shows the contrast distortion percentage of 
metric results on 15 test images. Considering the number 

of the smallest values for each kind of contrast distortion, 
from Table 2, we can see that, for reversal of visible con-
trast, the orders of the performance from the best to the 
worst are Masia, our method, Banterle, Meylan and 
Rempel. For loss of visible contrast, the method of 
Banterle is the best, followed by Rempel, our method, 

Table 2  Contrast distortion comparison.                                     %

 Ancient town Passageway  Building  

 Reverse Loss Amplification Total Reverse Loss Amplification Total Reverse Loss Amplification Total

Banterle 2.6  1.5  29.5  33.6 3.5 1.3 17.9  22.7 1.1 0.9  23.7  25.7 

Masia 4.1  3.2  34.9  42.2 1.6 2.6 27.5  31.6 1.3 1.3  35.2  37.7 

Meylan 11.8  19.9  23.9  55.6 9.9 14.7 10.9  35.6 5.9 16.0  10.3  32.2 

Rempel 10.6  1.0  57.9  69.6 11.9 1.3 31.2  44.4 12.1 1.5  49.5  63.1 

Ours 3.7  4.6  6.1  14.4 4.2 3.5 6.7  14.5 0.2 1.1  8.4  9.6 

 Sunset  Sunflower  Farm road 

 Reverse Loss Amplification Total Reverse Loss Amplification Total Reverse Loss Amplification Total

Banterle 0.6  0.9  45.5  47.0 0.2 1.0 10.5  11.7 8.6 17.2  3.9  29.6 

Masia 0.5  1.1  49.4  51.0 0.8 9.2 13.1  23.0 1.5 1.8  29.4  32.7 

Meylan 1.7  5.9  39.4  47.0 1.2 23.3 4.0  28.5 8.4 14.4  11.5  34.3 

Rempel 2.6  0.6  67.1  70.3 0.5 0.9 12.9  14.2 5.0 1.5  37.1  43.6 

Ours 0.9  22.1  17.8  40.8 0.0 0.9 2.0  2.9 2.0 1.6  19.5  23.2 

 Tree  Structure  Teaching building 

 Reverse Loss Amplification Total Reverse Loss Amplification Total Reverse Loss Amplification Total

Banterle 1.5  4.7  39.0  45.2 0.8 0.2 11.3  12.3 4.5 9.7  19.2  33.4 

Masia 9.6  24.4  10.8  44.9 0.7 14.9 15.2  30.8 1.8 3.6  50.4  55.8 

Meylan 7.5  39.9  15.1  62.6 3.8 46.1 4.1  54.0 9.0 33.0  16.0  58.0 

Rempel 2.2  1.0  37.9  41.1 2.7 0.3 15.2  18.2 2.7 0.7  41.7  45.0 

Ours 1.5  0.6  26.5  28.7 0.7 0.6 8.8  10.1 1.9 0.4  30.2  32.4 

 Tower  Lake  Statue  

 Reverse Loss Amplification Total Reverse Loss Amplification Total Reverse Loss Amplification Total

Banterle 3.4  0.2  47.4  51.1 0.5 0.1 29.2  29.8 1.6 0.4  50.9  53.0 

Masia 3.7  0.9  52.7  57.4 1.2 2.7 31.3  35.2 1.2 1.4  61.7  64.3 

Meylan 10.2  6.0  40.7  56.9 2.4 15.7 19.4  37.5 14.3 16.4  39.5  70.1 

Rempel 5.0  0.2  55.5  60.7 2.5 0.2 41.8  44.5 4.2 0.3  63.4  68.0 

Ours 2.4  1.0  38.8  42.2 1.1 8.5 11.7  21.4 3.3 7.8  28.8  39.9 

 Library  Temple  Path  

 Reverse Loss Amplification Total Reverse Loss Amplification Total Reverse Loss Amplification Total

Banterle 2.8  4.4  55.8  63.0 4.1 0.4 45.3  49.8 6.1 0.5  50.0  56.6 

Masia 1.8  3.9  31.1  36.8 2.7 4.3 57.2  64.1 3.6 3.2  69.3  76.0 

Meylan 8.8  22.3  18.5  49.6 20.6 23.0 31.6  75.2 17.3 16.1  27.7  61.2 

Rempel 2.4  0.3  38.4  41.1 6.9 0.5 54.3  61.6 7.5 0.2  65.0  72.7 

Ours 3.3  4.5  18.3  26.1 4.7 3.0 36.4  44.1 9.8 7.7  24.2  41.7 
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Masia and Meylan. For amplification of invisible contrast, 
our method is the best, and the method of Meylan is the 
second, followed by Banterle, Masia and Rempel. For 
total contrast distortion, our method is the best, followed 
by Banterle, Masia, Meylan and Rempel. 

4  Conclusions 
In this paper, we present a method for producing HDR 
image by estimating and performing the inverse CRF on 
single LDR image. We construct the model of inverse 
CRF according to the monotonic property of camera re-
sponse function and its database, estimate the inverse 
CRF by establishing Bayesian framework and solving the 
maximum of the posteriori probability, and produce 
HDR image by weighting and conducting the inverse 
CRF on single LDR image. Compared with other meth-
ods, our method induces the smallest contrast error and 
expands the dynamic range from both highlight area and 
shaded region. The performance of the estimated inverse 
CRF affects the HDR image quality. In the future work, 
we will explore more high-performance scheme for re-
constructing the inverse camera response function. 
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