Ma TG, Wang HZ, Guo LJ. OptoGPT: A foundation model for inverse design in optical multilayer thin film structures. Opto-Electron Adv 7, 240062 (2024). doi: 10.29026/oea.2024.240062
Citation: Ma TG, Wang HZ, Guo LJ. OptoGPT: A foundation model for inverse design in optical multilayer thin film structures. Opto-Electron Adv 7, 240062 (2024). doi: 10.29026/oea.2024.240062

Article Open Access

OptoGPT: A foundation model for inverse design in optical multilayer thin film structures

More Information
  • Author Bio: Work done while at University of Michigan. Currently at Amazon
  • *Corresponding author: LJ Guo, E-mail: guo@umich.edu
  • Optical multilayer thin film structures have been widely used in numerous photonic applications. However, existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets, or are difficult to suit for different types of structures, e.g., designing for different materials at each layer. These methods also cannot accommodate versatile design situations under different angles and polarizations. In addition, how to benefit practical fabrications and manufacturing has not been extensively considered yet. In this work, we introduce OptoGPT (Opto Generative Pretrained Transformer), a decoder-only transformer, to solve all these drawbacks and issues simultaneously.
  • 加载中
  • [1] Yang ZM, Ji CG, Liu D et al. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers. Adv Opt Mater 7, 1900739 (2019). doi: 10.1002/adom.201900739

    CrossRef Google Scholar

    [2] Wang DY, Liu ZY, Wang HZ et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023), doi: 10.1515/nanoph-2022-0063

    CrossRef Google Scholar

    [3] Ji CG, Yang CY, Shen WD et al. Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals. Nano Res 12, 543–548 (2019). doi: 10.1007/s12274-018-2249-8

    CrossRef Google Scholar

    [4] Li WW, Xu MZ, Xu HX et al. Metamaterial absorbers: from tunable surface to structural transformation. Adv Mater 34, 2202509 (2022). doi: 10.1002/adma.202202509

    CrossRef Google Scholar

    [5] Hu JQ, Wang ZR, Kim S et al. Polariton laser in the bardeen-cooper-schrieffer regime. Phys Rev X 11, 011018 (2021).

    Google Scholar

    [6] Fink Y, Winn JN, Fan SH et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998). doi: 10.1126/science.282.5394.1679

    CrossRef Google Scholar

    [7] Li ZY, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015). doi: 10.1021/ph500410u

    CrossRef Google Scholar

    [8] Liu MZ, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). doi: 10.1038/nature12509

    CrossRef Google Scholar

    [9] Raman AP, Anoma MA, Zhu LX et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). doi: 10.1038/nature13883

    CrossRef Google Scholar

    [10] Wang SC, Jiang TY, Meng Y et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021). doi: 10.1126/science.abg0291

    CrossRef Google Scholar

    [11] So S, Yun J, Ko B et al. Radiative cooling for energy sustainability: from fundamentals to fabrication methods toward commercialization. Adv Sci 11, 2305067 (2024). doi: 10.1002/advs.202305067

    CrossRef Google Scholar

    [12] Rabady RI, Ababneh A. Global optimal design of optical multilayer thin-film filters using particle swarm optimization. Optik 125, 548–553 (2014). doi: 10.1016/j.ijleo.2013.07.028

    CrossRef Google Scholar

    [13] Tikhonravov AV, Trubetskov MK, DeBell GW. Application of the needle optimization technique to the design of optical coatings. Appl Opt 35, 5493–5508 (1996). doi: 10.1364/AO.35.005493

    CrossRef Google Scholar

    [14] Schubert MF, Mont FW, Chhajed S et al. Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. Opt Express 16, 5290–5298 (2008). doi: 10.1364/OE.16.005290

    CrossRef Google Scholar

    [15] Shi Y, Li W, Raman A et al. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691 (2018). doi: 10.1021/acsphotonics.7b01136

    CrossRef Google Scholar

    [16] Ha YL, Luo Y, Pu MB et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133

    CrossRef Google Scholar

    [17] Liu DJ, Tan YX, Khoram E et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018). doi: 10.1021/acsphotonics.7b01377

    CrossRef Google Scholar

    [18] Dai P, Sun K, Yan XZ et al. Inverse design of structural color: finding multiple solutions via conditional generative adversarial networks. Nanophotonics 11, 3057–3069 (2022). doi: 10.1515/nanoph-2022-0095

    CrossRef Google Scholar

    [19] Unni R, Yao K, Zheng YB. Deep convolutional mixture density network for inverse design of layered photonic structures. ACS Photonics 7, 2703–2712 (2020). doi: 10.1021/acsphotonics.0c00630

    CrossRef Google Scholar

    [20] Wang HZ, Guo LJ. NEUTRON: neural particle swarm optimization for material-aware inverse design of structural color. iScience 25, 104339 (2022), doi: 10.1016/j.isci.2022.104339

    CrossRef Google Scholar

    [21] Chen W, Gao Y, Li YY et al. Broadband solar metamaterial absorbers empowered by transformer-based deep learning. Adv Sci 10, 2206718 (2023). doi: 10.1002/advs.202206718

    CrossRef Google Scholar

    [22] Lee S, Park C, Rho J. Mapping information and light: trends of AI-enabled metaphotonics. Curr Opin Solid State Mater Sci 29, 101144 (2024). doi: 10.1016/j.cossms.2024.101144

    CrossRef Google Scholar

    [23] Ma TG, Tobah M, Wang HZ et al. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [24] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates Inc. , 2017); http://doi.org/10.5555/3295222.3295349.

    Google Scholar

    [25] Bommasani R, Hudson DA, Adeli E et al. On the opportunities and risks of foundation models. arXiv: 2108.07258 (2022). https://doi.org/10.48550/arXiv.2108.07258

    Google Scholar

    [26] Radford A, Narasimhan K, Salimans T et al. Improving language understanding by generative pre-training. (2018).

    Google Scholar

    [27] Brown TB, Mann B, Ryder N et al. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems 159 (Curran Associates Inc. , 2020); http://doi.org/10.5555/3495724.3495883.

    Google Scholar

    [28] Ouyang L, Wu J, Jiang X et al. Training language models to follow instructions with human feedback. In Proceedings of the 36th International Conference on Neural Information Processing Systems 2011 (Curran Associates Inc. , 2022); http://doi.org/10.5555/3600270.3602281.

    Google Scholar

    [29] Byrnes SJ. Multilayer optical calculations. arXiv: 1603.02720 (2020). https://doi.org/10.48550/arXiv.1603.02720

    Google Scholar

    [30] Hinton G, Roweis S. Stochastic neighbor embedding. In Proceedings of the 15th International Conference on Neural Information Processing Systems 857–864 (MIT Press, 2002); http://doi.org/10.5555/2968618.2968725.

    Google Scholar

    [31] Taylor R, Kardas M, Cucurull G et al. Galactica: a large language model for science. arXiv: 2211.09085 (2022). https://arxiv.org/abs/2211.09085

    Google Scholar

    [32] Reed S, Zolna K, Parisotto E et al. A generalist agent. arXiv: 2205.06175 (2022).

    Google Scholar

    [33] Driess D, Xia F, Sajjadi MSM et al. PaLM-E: an embodied multimodal language model. In Proceedings of the 40th International Conference on Machine Learning 340 (JMLR. org, 2023); http://doi.org/10.5555/3618408.3618748.

    Google Scholar

    [34] Han X, Fan ZY, Liu ZY et al. Inverse design of metasurface optical filters using deep neural network with high degrees of freedom. InfoMat 3, 432–442 (2021). doi: 10.1002/inf2.12116

    CrossRef Google Scholar

    [35] Unni R, Yao K, Han XW et al. A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors. Nanophotonics 10, 4057–4065 (2021). doi: 10.1515/nanoph-2021-0392

    CrossRef Google Scholar

    [36] Slobodkin Y, Weinberg G, Hörner H et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science 377, 995–998 (2022). doi: 10.1126/science.abq8103

    CrossRef Google Scholar

    [37] Lord J, Thomas A, Treat N et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021). doi: 10.1038/s41586-021-03900-w

    CrossRef Google Scholar

    [38] Teperik TV, García De Abajo FJ, Borisov AG et al. Omnidirectional absorption in nanostructured metal surfaces. Nat Photon 2, 299–301 (2008). doi: 10.1038/nphoton.2008.76

    CrossRef Google Scholar

    [39] Nga DT, Phan AD, Lam VD et al. Optimizing the design of broadband solar metamaterial absorbers based on titanium nitride nanorings [Invited]. Opt Mater Express 13, 2787–2797 (2023). doi: 10.1364/OME.499630

    CrossRef Google Scholar

    [40] Yang CY, Ji CG, Shen WD et al. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics 3, 590–596 (2016). doi: 10.1021/acsphotonics.5b00689

    CrossRef Google Scholar

    [41] Tan SJ, Zhang L, Zhu D et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14, 4023–4029 (2014). doi: 10.1021/nl501460x

    CrossRef Google Scholar

    [42] Yang WH, Xiao SM, Song QH et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0

    CrossRef Google Scholar

    [43] Song MW, Li X, Pu MB et al. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 7, 323–331 (2018). doi: 10.1515/nanoph-2017-0062

    CrossRef Google Scholar

    [44] Balaur E, O’Toole S, Spurling AJ et al. Colorimetric histology using plasmonically active microscope slides. Nature 598, 65–71 (2021). doi: 10.1038/s41586-021-03835-2

    CrossRef Google Scholar

    [45] Gao L, Li XZ, Liu DJ et al. A bidirectional deep neural network for accurate silicon color design. Adv Mater 31, 1905467 (2019). doi: 10.1002/adma.201905467

    CrossRef Google Scholar

    [46] Lee C, Lee S, Seong J et al. Inverse-designed metasurfaces for highly saturated transmissive colors. J Opt Soc Am B 41, 151–158 (2024). doi: 10.1364/JOSAB.505444

    CrossRef Google Scholar

    [47] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth 16x16 words: transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations (OpenReview. net, 2021).

    Google Scholar

  • Supplementary information for OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint