Sun N, Gan Y, Wu YJ et al. Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system. Opto-Electron Adv 8, 240182 (2025). doi: 10.29026/oea.2025.240182
Citation: Sun N, Gan Y, Wu YJ et al. Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system. Opto-Electron Adv 8, 240182 (2025). doi: 10.29026/oea.2025.240182

Article Open Access

Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system

More Information
  • In this study, we developed a single-beam optical trap-based surface-enhanced Raman scattering (SERS) optofluidic molecular fingerprint spectroscopy detection system. This system utilizes a single-beam optical trap to concentrate free silver nanoparticles (AgNPs) within an optofluidic chip, significantly enhancing SERS performance. We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs, demonstrating the theoretical feasibility of our approach. To verify the particle capture efficacy of the system, we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely. The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state, confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system. Furthermore, we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect, revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved. We successfully detected the Raman spectrum of crystal violet at a concentration of 10−9 mol/L and pesticide thiram at a concentration of 10−5 mol/L, further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips. The optical trapping SERS optofluidic detection system developed in this study, as a key component of an integrated optoelectronic sensing system, holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers. This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
  • 加载中
  • [1] Li GQ, Zhao X, Tang X et al. Wearable hydrogel SERS chip utilizing plasmonic trimers for uric acid analysis in sweat. Nano Lett 24, 13447–13454 (2024). doi: 10.1021/acs.nanolett.4c04267

    CrossRef Google Scholar

    [2] Bharati MSS, Soma VR. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv 4, 210048 (2021). doi: 10.29026/oea.2021.210048

    CrossRef Google Scholar

    [3] Shao MR, Ji C, Tan JB et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv 6, 230094 (2023). doi: 10.29026/oea.2023.230094

    CrossRef Google Scholar

    [4] Wang ZK, Sha HY, Zhu Y et al. A compact device of optical fiber taper coupled monolayer silver nanoparticles for Raman enhancement. J Lightwave Technol 42, 865–874 (2024). doi: 10.1109/JLT.2023.3317671

    CrossRef Google Scholar

    [5] Lin CL, Li YY, Peng YS, et al. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnol 21, 149 (2023). doi: 10.1186/s12951-023-01890-7

    CrossRef Google Scholar

    [6] Zhang J, Zhang XL, Chen SM et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon 100, 395–407 (2016). doi: 10.1016/j.carbon.2016.01.025

    CrossRef Google Scholar

    [7] Kim K, Lee H, Choi J et al. Silver-coated dye-embedded silica beads: a core material of dual tagging sensors based on fluorescence and Raman scattering. ACS Appl Mater Interfaces 3, 324–330 (2011). doi: 10.1021/am1009474

    CrossRef Google Scholar

    [8] Chen JM, Huang YJ, Kannan P et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88, 2149–2155 (2016). doi: 10.1021/acs.analchem.5b03735

    CrossRef Google Scholar

    [9] He LL, Chen T, Labuza TP. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem 148, 42–46 (2014). doi: 10.1016/j.foodchem.2013.10.023

    CrossRef Google Scholar

    [10] Yuan JP, Lai YC, Duan JL et al. Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J Colloid Interface Sci 365, 122–126 (2012). doi: 10.1016/j.jcis.2011.08.075

    CrossRef Google Scholar

    [11] Li JF, Huang YF, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). doi: 10.1038/nature08907

    CrossRef Google Scholar

    [12] Muro CK, Doty KC, Bueno J et al. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem 87, 306–327 (2015). doi: 10.1021/ac504068a

    CrossRef Google Scholar

    [13] Whitesides GM. The origins and the future of microfluidics. Nature 442, 368–373 (2006). doi: 10.1038/nature05058

    CrossRef Google Scholar

    [14] Yager P, Edwards T, Fu E et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006). doi: 10.1038/nature05064

    CrossRef Google Scholar

    [15] Yuan XL, Darcie T, Wei ZY et al. Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electron Adv 5, 210130 (2022). doi: 10.29026/oea.2022.210130

    CrossRef Google Scholar

    [16] Wang MM, Tu E, Raymond DE et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23, 83–87 (2005). doi: 10.1038/nbt1050

    CrossRef Google Scholar

    [17] Zhu JM, Zhu XQ, Zuo YF et al. Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron Adv 2, 190007 (2019).

    Google Scholar

    [18] Monisha K, Suresh K, Bankapur A et al. Optically printed plasmonic fiber tip-assisted SERS-based chemical sensing and single biological cell studies. Anal Chim Acta 1317, 342903 (2024). doi: 10.1016/j.aca.2024.342903

    CrossRef Google Scholar

    [19] Wang XH, Hofmann O, Das R et al. Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip 7, 58–63 (2007). doi: 10.1039/B611067C

    CrossRef Google Scholar

    [20] Fan MK, Wang PH, Escobedo C et al. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of Nile blue A and oxazine 720. Lab Chip 12, 1554–1560 (2012). doi: 10.1039/c2lc20648j

    CrossRef Google Scholar

    [21] Bai S, Ren XL, Obata K et al. Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip. Opto-Electron Adv 5, 210121 (2022). doi: 10.29026/oea.2022.210121

    CrossRef Google Scholar

    [22] Bo H, Ke Y, Yong Z et al. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection. Opt Express 31 , 27304–27311 (2023).

    Google Scholar

    [23] Li L, Xiao L, Wang JH et al. Movable electrowetting optofluidic lens for optical axial scanning in microscopy. Opto-Electron Adv 2, 180025 (2019).

    Google Scholar

    [24] Sun N, Huang B, Lv ZY et al. UV-catalyzed TiO2-based optofluidic SERS chip for three online strategies: fabrication, detection, and self-cleaning. Anal Chem 96, 9104–9112 (2024). doi: 10.1021/acs.analchem.4c00657

    CrossRef Google Scholar

    [25] Huang JA, Zhang YL, Ding H et al. SERS-enabled lab-on-a-chip systems. Adv Opt Mater 3, 618–633 (2015). doi: 10.1002/adom.201400534

    CrossRef Google Scholar

    [26] Oliveira K, Teixeira A, Fernandes JM et al. Multiplex SERS phenotyping of single cancer cells in microdroplets. Adv Opt Mater 11, 2201500 (2023). doi: 10.1002/adom.202201500

    CrossRef Google Scholar

    [27] Na R, Xing W, Yuan G et al. Optofluidic SERS based on Ag nanocubes with high sensitivity for detecting a prevalent water pollutant. Opt Lett 49 , 2689–2692 (2024).

    Google Scholar

    [28] Deng YL, Juang YJ. Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. Biomicrofluidics 7, 014111 (2013). doi: 10.1063/1.4793224

    CrossRef Google Scholar

    [29] Chon H, Lim C, Ha SM et al. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82, 5290–5295 (2010). doi: 10.1021/ac100736t

    CrossRef Google Scholar

    [30] Zhao LY, Wang YL, Jin ST et al. Rational electrochemical design of hierarchical microarchitectures for SERS sensing applications. Nat Synth 3, 867–877 (2024). doi: 10.1038/s44160-024-00553-1

    CrossRef Google Scholar

    [31] Chen XY, Ding QQ, Bi C et al. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat Commun 13, 7807 (2022). doi: 10.1038/s41467-022-35495-9

    CrossRef Google Scholar

    [32] Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24, 156–159 (1970). doi: 10.1103/PhysRevLett.24.156

    CrossRef Google Scholar

    [33] Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94, 4853–4860 (1997). doi: 10.1073/pnas.94.10.4853

    CrossRef Google Scholar

    [34] Grier DG. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935

    CrossRef Google Scholar

    [35] Dholakia K, Reece P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).

    Google Scholar

    [36] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61, 569–582 (1992). doi: 10.1016/S0006-3495(92)81860-X

    CrossRef Google Scholar

    [37] Bosanac L, Aabo T, Bendix PM et al. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett 8, 1486–1491 (2008). doi: 10.1021/nl080490+

    CrossRef Google Scholar

    [38] Xin HB, Li BJ. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Opt Express 19, 13285–13290 (2011). doi: 10.1364/OE.19.013285

    CrossRef Google Scholar

    [39] Svedberg F, Li ZP, Xu HX et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett 6, 2639–2641 (2006). doi: 10.1021/nl062101m

    CrossRef Google Scholar

    [40] Tong LM, Righini M, Gonzalez MU et al. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip 9, 193–195 (2009). doi: 10.1039/B813204F

    CrossRef Google Scholar

    [41] Svedberg F, Käll M. On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss 132, 35–44 (2006). doi: 10.1039/B509301P

    CrossRef Google Scholar

    [42] Ashkin A, Dziedzic JM, Bjorkholm JE et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288

    CrossRef Google Scholar

    [43] Xin HB, Li XM, Li BJ. Massive photothermal trapping and migration of particles by a tapered optical fiber. Opt Express 19, 17065–17074 (2011). doi: 10.1364/OE.19.017065

    CrossRef Google Scholar

    [44] Xin HB, Lei HX, Zhang Y et al. Photothermal trapping of dielectric particles by optical fiber-ring. Opt Express 19, 2711–2719 (2011). doi: 10.1364/OE.19.002711

    CrossRef Google Scholar

    [45] Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124, 529–541 (1996). doi: 10.1016/0030-4018(95)00753-9

    CrossRef Google Scholar

  • Supplementary information for Single-beam optical trap-based surfaceenhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint