Li Y M, Tu J K, Xiang H Z, et al. Measurement of optical fiber geometry parameters by gray distribution fitting with Gaussian function[J]. Opto-Electron Eng, 2020, 47(4): 190247. doi: 10.12086/oee.2020.190247
Citation: Li Y M, Tu J K, Xiang H Z, et al. Measurement of optical fiber geometry parameters by gray distribution fitting with Gaussian function[J]. Opto-Electron Eng, 2020, 47(4): 190247. doi: 10.12086/oee.2020.190247

Measurement of optical fiber geometry parameters by gray distribution fitting with Gaussian function

    Fund Project: Supported by National Natural Science Foundation for Young Scientists of China (61605114)
More Information
  • The geometry parameters of optical fiber affect the optical transmission and mechanical properties, which are the important indexes to measure the quality of fiber. Near-field light distribution method is recommended in GB15972.20-2008 for the measurement of geometry parameters. In order to distinguish the boundary between fiber core and cladding, the method needs to illuminate the fiber. The end face of the fiber core is a bright spot with unclear edge, so the true edge of the core and cladding cannot be accurately judged. In this paper, the distribution of mode field in optical fiber is analyzed. Theoretically, the solution of electromagnetic vector of mode field satisfies Bessel function, but Gaussian function can also be used under approximate conditions. Therefore, Gaussian function is used to fit the distribution of the fiber core in this paper, and the real edge of the fiber core and cladding can be obtained from the Gaussian function after fitting. This method is a further improvement on the measurement method of GB15972.20-2008. The experimental results show that when the cutting effect of the fiber is not good or the imaging quality is poor, the Gaussian function method fitting with mode distribution can still ensure the repeatability of the measurement and the stability of the measured data.
  • 加载中
  • [1] Ekici C, Dinleyici M S. A practical approach for optical characterization of a film coated on the optical fiber[J]. Optical Fiber Technology, 2017, 36: 382-386. doi: 10.1016/j.yofte.2017.05.015

    CrossRef Google Scholar

    [2] Zhang H, Kuschmierz R, Czarske J. Miniaturized interferometric 3-D shape sensor using coherent fiber bundles[J]. Optics and Lasers in Engineering, 2018, 107: 364-369. doi: 10.1016/j.optlaseng.2018.04.011

    CrossRef Google Scholar

    [3] 张晓娟, 赵建林, 侯建平.一种新型高双折射光子晶体光纤[J].物理学报, 2007, 56(8): 4668-4676. doi: 10.3321/j.issn:1000-3290.2007.08.055

    CrossRef Google Scholar

    Zhang X J, Zhao J L, Hou J P. A novel photonic crystal fiber with high birefringence[J]. Acta Physica Sinica, 2007, 56(8): 4668-4676. doi: 10.3321/j.issn:1000-3290.2007.08.055

    CrossRef Google Scholar

    [4] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.光纤试验方法规范第20部分: 尺寸参数的测量方法和试验程序光纤几何参数: GB/T 15972.20-2008[S].北京: 中国标准出版社, 2008.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. Specifications for optical fibre test methods-Part 20: measurement methods and test procedures for dimensions-fiber geometry: GB/T 15972.20-2008[S]. Beijing: China Standard Press, 2008.

    Google Scholar

    [5] 陈磊, 陈进榜, 陆润华.光纤几何参数的自动检测仪[J].光学学报, 2001, 21(10): 1245-1248. doi: 10.3321/j.issn:0253-2239.2001.10.021

    CrossRef Google Scholar

    Chen L, Chen J B, Lu R H. Automatic measurement of optical fiber geometric parameters[J]. Acta Optica Sinica, 2001, 21(10): 1245-1248. doi: 10.3321/j.issn:0253-2239.2001.10.021

    CrossRef Google Scholar

    [6] 赵新彦, 陈陶, 丁志雄.光纤端面参数自动化测量系统的研究[J].光学仪器, 2009, 31(4): 1-6. doi: 10.3969/j.issn.1005-5630.2009.04.001

    CrossRef Google Scholar

    Zhao X Y, Chen T, Ding Z X. Research on automatic measurement system for fiber end-face parameters[J]. Optical Instruments, 2009, 31(4): 1-6. doi: 10.3969/j.issn.1005-5630.2009.04.001

    CrossRef Google Scholar

    [7] Chang Y Y, Wang L A. Silicon cored fiber diameter measurement[C]//Proceedings of 2015 International Conference on Optical MEMS and Nanophotonics, 2015: 1-2.

    Google Scholar

    [8] 林延东, 李平, 李熙.连续变孔径法单模光纤模场直径(MFD)测量的数据处理[J].现代计量测试, 1999(5): 29-31, 36.

    Google Scholar

    Lin Y D, Li P, Li X. Data processing method for MFD measurement by means of continuous variable aperture far field[J]. Modern Measurement and Test, 1999(5): 29-31, 36.

    Google Scholar

    [9] Gander W, Golub G H, Strebel R. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558-578. doi: 10.1007/BF01934268

    CrossRef Google Scholar

    [10] 殷爱娥, 姜仲玄, 张一龙.光纤折射率剖面的折射近场法测量的研究[J].光学学报, 1989, 9(2): 181-185. doi: 10.3321/j.issn:0253-2239.1989.02.014

    CrossRef Google Scholar

    Yin A E, Jiang Z X, Zhang Y L. Refracted near-field technique for the measurement of optical fiber refractive index profiles[J]. Acta Optica Sinica, 1989, 9(2): 181-185. doi: 10.3321/j.issn:0253-2239.1989.02.014

    CrossRef Google Scholar

    [11] 高迎春.基于折射近场法测量光纤折射率分布的仿真研究[D].哈尔滨: 哈尔滨工程大学, 2012.

    Google Scholar

    Gao Y C. Simulation of measuring the optical fiber refractive index profiles by refraction near-field method[D]. Harbin: Harbin Engineering University, 2012.

    Google Scholar

    [12] 孙会刚, 储九荣, 钟力生, 等.塑料光纤折射率分布的测量方法[J].光纤与电缆及其应用技术, 2001(4): 12-16. doi: 10.3969/j.issn.1006-1908.2001.04.004

    CrossRef Google Scholar

    Sun H G, Chu J R, Zhong L S, et al. Measurement of refractive-index profile of plastic optical fibers[J]. Optical Fiber & Electric Cable, 2001(4): 12-16. doi: 10.3969/j.issn.1006-1908.2001.04.004

    CrossRef Google Scholar

    [13] 李春生, 李琳莹, 杨世信, 等.单模光纤模场直径标准研究[J].现代传输, 2013(2): 72-76. doi: 10.3969/j.issn.1673-5137.2013.02.008

    CrossRef Google Scholar

    Li C X, Li L Y, Yang S X, et al. Study on mode field diameter standard of single-mode optical fiber[J]. Modern Transmission, 2013(2): 72-76. doi: 10.3969/j.issn.1673-5137.2013.02.008

    CrossRef Google Scholar

    [14] 沈奶连, 涂建坤, 王建财, 等.光纤几何参数测试仪的研究与设计[J].现代传输, 2008, 34(6): 51-54. doi: 10.3969/j.issn.1673-5137.2008.06.020

    CrossRef Google Scholar

    Shen N L, Tu J K, Wang J C, et al. Research and design of optical fiber geometry testing instrument[J]. Modern Transmission, 2008, 34(6): 51-54. doi: 10.3969/j.issn.1673-5137.2008.06.020

    CrossRef Google Scholar

    [15] 欧攀.高等光学仿真(MATLAB版)--光波导, 激光[M]. 2版.北京:北京航空航天大学出版社, 2014.

    Google Scholar

    Ou P. Advanced Optical Simulation (MATLAB Version)-Optical Waveguide, Laser[M]. 2nd ed. Beijing: Beihang University Press, 2014.

    Google Scholar

    [16] 郭福源, 李连煌, 王明华.介质平面光波导TE0模模场分布的高斯近似[J].中国激光, 2008, 35(2): 235-239. doi: 10.3321/j.issn:0258-7025.2008.02.016

    CrossRef Google Scholar

    Guo F Y, Li L H, Wang M H. Gaussian approximation for mode field distribution of dielectric planar waveguide TE0 mode[J]. Chinese Journal of Lasers, 2008, 35(2): 235-239. doi: 10.3321/j.issn:0258-7025.2008.02.016

    CrossRef Google Scholar

    [17] 宋小鹿, 李兵斌, 王石语, 等.一种测量激光光强按角度分布的新方法[J].半导体光电, 2007, 28(4): 572-575. doi: 10.3969/j.issn.1001-5868.2007.04.032

    CrossRef Google Scholar

    Song X L, Li B B, Wang S Y, et al. A new measurement of light intensity distribution with divergence[J]. Semiconductor Optoelectronics, 2007, 28(4): 572-575. doi: 10.3969/j.issn.1001-5868.2007.04.032

    CrossRef Google Scholar

    [18] Marcuse D. Gaussian approximation of the fundamental modes of graded-index fibers[J]. Journal of the Optical Society of America, 1978, 68(1): 103-109. doi: 10.1364/JOSA.68.000103

    CrossRef Google Scholar

    [19] 李一鸣, 涂建坤, 项华中, 等.用Canny算子和二值化滤波的光纤几何参数测量[J].光学技术, 2018, 44(5): 513-518.

    Google Scholar

    Li Y M, Tu J K, Xiang H Z, et al. Measurement of optical fiber geometric parameters with Canny operator and binaryzation filtering[J]. Optical Technique, 2018, 44(5): 513-518.

    Google Scholar

    [20] 李一鸣, 郑刚, 涂建坤, 等.任意椭圆函数拟合法测量光纤几何参数[J].光电工程, 2019, 46(5): 180319. doi: 10.12086/oee.2019.180319

    CrossRef Google Scholar

    Li Y M, Zheng G, Tu J K, et al. Measurement of optical fiber geometry with arbitrary ellipse curve fitting[J]. Opto-Electronic Engineering, 2019, 46(5): 180319. doi: 10.12086/oee.2019.180319

    CrossRef Google Scholar

    [21] 刘为, 唐春晖, 马秀梅, 等.缺陷光纤端面几何参数的测量[J].光通信研究, 2013(6): 35-38. doi: 10.3969/j.issn.1005-8788.2013.06.011

    CrossRef Google Scholar

    Liu W, Tang C H, Ma X M, et al. Measurement of geometric parameters of defective fiber ends[J]. Study on Optical Communications, 2013(6): 35-38. doi: 10.3969/j.issn.1005-8788.2013.06.011

    CrossRef Google Scholar

    [22] 穆丹丹, 朱永田, 张凯.天文光纤机械扰模器调制环形光场的实验研究[J].应用光学, 2012, 33(5): 996-1001.

    Google Scholar

    Mu D D, Zhu Y T, Zhang K. Modulation of annular light distribution by mechanical fiber scrambler[J]. Journal of Applied Optics, 2012, 33(5): 996-1001.

    Google Scholar

  • Overview: The geometry parameters of optical fiber affect the optical transmission and mechanical properties of optical fiber. The near-field optical distribution method is a measurement method recommended in GB15972.20-2008. The main parameters to be measured include the diameter of cladding and core, the roundness of cladding and core, and the concentricity of cladding and core. In order to distinguish the boundary between fiber core and cladding, the fiber core should be illuminated during the measurement of the geometry parameters. Actually, the end face of fiber core is a bright spot with unclear edges, so it is impossible to accurately judge the true edges of fiber core, which will bring errors to the measurement of geometry parameters of fiber core. In this paper, the distribution of optical mode field in fiber was analyzed. Theoretically, the solution of electromagnetic vector of optical fiber mode field satisfies Bessel function, but Gaussian function can also be used to approximately describe the distribution of optical fiber mode field.

    Therefore, Gaussian function was used to fit the gray distribution of fiber core, and the true edge of fiber core was obtained from the Gaussian function. Gaussian function fitting method mainly includes the following three steps. The first step is to obtain the image of the end face of the optical fiber by CCD and conduct appropriate image preprocessing. The image contrast is stronger and more conducive to subsequent gray data extraction by image preprocessing. The second step is to find the best Gaussian function by the fitting with gray data of the image. 3D fitting with all the gray data of fiber core end face can effectively filter out error data and reflect the true mode field distribution of fiber core. The third step is to find the true edge of the fiber core through the best-fitting Gaussian function, and fit the edge data with elliptical curves. Finally, the geometry parameters of the fiber core will be obtained. For the measurement of cladding geometry parameters, because of the high contrast of the edge, Canny operator can be directly used to extract the edge of the cladding. The cladding geometry parameters with high precision can be obtained by elliptical curves fitting.

    The real edge of optical fiber core can be accurately obtained by Gaussian function fitting, and the error points in the image can be effectively filtered through fitting, so as to improve the measurement accuracy of optical fiber geometry parameters. Taking fiber core data as an example, the data of diameter and roundness measured by the standard instrument are 8.420 μm and 0.670%, respectively. When cutting effect of fiber end face or lighting condition is poor, the instrument data change to 9.044 μm and 1.457%, while the data measured in this paper are 8.425 μm and 0.480%, respectively.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint