Citation: |
|
[1] | Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417-9431. doi: 10.1364/OE.26.009417 |
[2] | Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3 |
[3] | Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8-9): 976-1019. doi: 10.1007/s10762-011-9809-2 |
[4] | Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874-27885. doi: 10.1364/OE.25.027874 |
[5] | Zinov'ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. doi: 10.1134/S0021364008200058 |
[6] | Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834-1841. doi: 10.1109/TAP.2010.2046860 |
[7] | Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180. doi: 10.1038/s41598-018-36642-3 |
[8] | Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165-173. doi: 10.1109/TTHZ.2017.2781462 |
[9] | Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834-6839. doi: 10.1364/AO.49.006834 |
[10] | Hunsche S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1997, 150(1-6): 22-26. |
[11] | Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591-593. doi: 10.1063/1.127054 |
[12] | Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608-614. doi: 10.1109/2944.974232 |
[13] | Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496-3498. doi: 10.1063/1.1328772 |
[14] | Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009-3011. doi: 10.1063/1.1616668 |
[15] | van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558-1560. doi: 10.1063/1.1503404 |
[16] | Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549-552. doi: 10.1021/nl503998v |
[17] | Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676-2680. doi: 10.1021/acsphotonics.7b00870 |
[18] | Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058-2060. doi: 10.1364/OL.28.002058 |
[19] | Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115-120. doi: 10.1364/OPEX.13.000115 |
[20] | Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169-171. doi: 10.1088/0256-307X/24/1/046 |
[21] | 杨玉平, 施宇蕾, 严伟, 等.一种新型THz显微探测技术[J], 物理学报, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021 Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021 |
[22] | Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880. doi: 10.1038/srep03880 |
[23] | Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120. doi: 10.1063/1.2387984 |
[24] | Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017. doi: 10.1117/1.JBO.20.3.036017 |
[25] | Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105. doi: 10.1063/1.4926967 |
[26] | Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-24. doi: 10.1364/OL.44.000021 |
[27] | Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. doi: 10.1038/ncomms1211 |
[28] | Pacheco-Peña V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102. doi: 10.1063/1.4894243 |
[29] | Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105. doi: 10.1063/1.5026758 |
[30] | Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. doi: 10.1063/1.3662010 |
[31] | Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. doi: 10.1063/1.4757600 |
[32] | Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710. doi: 10.1088/2040-8978/15/12/125710 |
[33] | Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104. |
[34] | Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super-resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876. doi: 10.1002/smll.201470055 |
[35] | Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101. doi: 10.1063/1.5011067 |
[36] | Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. doi: 10.1021/nn406201q |
[37] | Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479-16486. doi: 10.1364/OE.24.016479 |
[38] | Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255 |
[39] | Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220. doi: 10.1364/OPEX.12.001214 |
[40] | Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120-4123. doi: 10.1364/OL.39.004120 |
[41] | Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3. doi: 10.1140/epjti/s40485-017-0038-5 |
[42] | Pacheco-Peña V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245-248. doi: 10.1364/OL.40.000245 |
[43] | Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102. doi: 10.1063/1.4949014 |
[44] | Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105. doi: 10.1063/1.4983640 |
[45] | Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106. doi: 10.1063/1.4983114 |
[46] | Minin I V, Minin O V, Pacheco-Peña V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102. doi: 10.1063/1.4923186 |
[47] | Minin I V, Minin O V, Pacheco-Peña V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329-2332. doi: 10.1364/OL.40.002329 |
[48] | Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546-552. doi: 10.1007/s10762-018-0479-1 |
[49] |
Minin I V, Minin O V. Terajet from 3D anisotropic artificial metamaterial[C]//Proceedings of 2016 13th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering, 2016: 142-144. |
[50] | Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326. doi: 10.1007/s11082-017-1165-6 |
[51] | Cruz A L S, Cordeiro C M B, Franco M A R. Enhanced Terahertz transmission through 3D non-spherical terajets[J]. Proceedings of SPIE, 2015, 9634: 963412. |
[52] | Niu L T, Wang K J, Yang Y Q, et al. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging[J]. IEEE Photonics Journal, 2019, 11(1): 5900212. |
[53] | Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471-475. doi: 10.1109/TTHZ.2019.2926630 |
[54] | Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1-2. |
[55] | Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606. |
[56] | Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703. doi: 10.1063/1.4973764 |
Overview: In the past decades, great advancements have been made to achieve super-resolution imaging, including near-field THz microscopy, metamaterial superlens, fluorescence microscopy and so on, pushing the resolution to ñm or nm scale. Unfortunately, applications of these methods have been limited in part due to their complication in access and operation, loss of energy and spectral bandwidth, difficulty in information extraction or limited choices of samples. Thus, it is highly desired to develop innovative super-resolution THz imaging modality that is easily accessible and low-cost. Fortunately, at visible frequencies, a unique easy-access super-resolution imaging where dielectric microsphere with appropriate refractive index has been presented and delivered a remarkable 50 nm resolution with white lights in 2010. Furthermore, super-resolution imaging was also presented with a large field-of-view using large polystyrene microspheres (above 30 μm). A strong continuing interest in the technique has led to numerous progress in visible light. In these works, the super-resolution capability of microspheres is determined by the "photonic nanojet" and coupling with evanescent waves. More recently, a straightforward THz imaging method based on terajet effect, analogous to microsphere optical nanoscope, is proposed and developed with spatial resolution beyond the diffraction limit by using either continuous or pulsed THz wave. The terajet beam can break through the restriction of the diffraction limit on the spatial resolution of the microscopic system without losing the energy and spectral bandwidth of the THz field, i.e., a high-resolution, high-throughput and broad-bandwidth THz imaging method. Also, with the extensively longer wavelength of the THz wave, the size of the dielectric spheres is much larger (on the order of millimeters), the spheres are easier to fabricate, simple to manipulate, and capable of handling energy and bandwidth losses. In addition, as unique spectroscopic technique, THz imaging reveals much richer subwavelength structural information, including frequency-dependent amplitude and phase, as well as time-dependent delay and thickness. In this review, firstly, a white-light nanoscopy based on photonic nanojet produced by microspheres is introduced, then the terahertz microscopy based on terajet effect produced by mesoscopic dielectric structures is reviewed. Finally, the prospect of terahertz high resolution imaging technology based on terajet effect is prospected.
(a) Experimental configuration of a white-light microsphere nanoscope; microsphere superlens imaging in transmission mode; (b) 360 nm wide lines spaced 130 nm apart; (c) A gold-coated fishnet AAO sample; and microsphere superlens imaging in reflection mode; (d) A commercial Blue-ray DVD disk; (e) A star structure made on GeSbTe thin film[27]
(a) Schematic diagram of photonic nanojet produced by microsphere[39]; (b) Comparison between single-layer homogeneous microspheres and double-layer heterogeneous microspheres[40]; (c) Microsphere optical nano-jet related to non-diffractive Bessel beams[41]
(a) Schematic diagram of terajet beam generated by dielectric cuboids with different refractive index[28]; (b) Dielectric cube coupled THz imaging system in reflection mode and its amplitude and phase images for aluminum plate samples[45]
(a) Schematic diagram of all-dielectric period terajet waveguide using an array of couple cuboids and its electric field distribution[46]; (b) Schematic diagram of the pupil-masked 3D dielectric cuboid and its electric field distribution[48]
Distribution of electric energy generated by different geometric structures. (a) Metal rod array filled rectangular condyle[49], (b) sphere[51], (c) triangular condyle[51], (d) trapezoidal condyle[51], and (e) fan-shaped condyle[51]
(a) Schematic diagram of a lens group setup; (b) Schematic diagram of THz transmission imaging system by using THz sheet; (c) Measured intensities of output beam from lens group system[53]
(a) Schematic diagram of dielectric sphere coupled THz microscopy; (b) Imaging resolution; (c) Contrast image with and without dielectric sphere[29]
(a) THz time-domain waveforms with and without dielectric sphere; (b) Frequency-domain signals; (c) Relative amplitude transmittance[54]
(a) The spatial energy distribution of 3 mm sphere in z-x plane at different frequencies; (b) Evolution of a jet-like energy distribution as the refractive index of 3 mm dielectric sphere increases from 1.4 to 2.0[29]
The spatial energy distribution of 3 mm sphere in x-z plane at (a) 0.5 THz, (b) 1.0 THz, (c) 1.5 THz, (d) 2.0 THz, (e) 2.5 THz, and (f) 3.0 THz[54]