Ma X M, Jiang Z C, Qu Q S, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electron Eng, 2020, 47(5): 190590. doi: 10.12086/oee.2020.190590
Citation: Ma X M, Jiang Z C, Qu Q S, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electron Eng, 2020, 47(5): 190590. doi: 10.12086/oee.2020.190590

Research advances of high-resolution THz imaging based on terajet effect

    Fund Project: Supported by National Natural Science Foundation of China (11574408), the National Key R & D Program of China (2017YFB0405400), the Young-talent Plan of State Affairs Commission (2016-3-02), and the Undergraduate Innovative Test Program funded by Minzu University of China (URTP2019110002)
More Information
  • Terahertz (THz) imaging technology has shown great advantages and potential applications in the fields of biomedicine, security, and aerospace, due to its low energy, high transmittance, wide bandwidth, and unique analysis abilities; while low spatial resolution restricts its further applications. Recently, a high-resolution, high-throughput, and broad-bandwidth THz imaging method has been proposed based on the terajet effect produced by dielectric structures with appropriate refractive index. The terajet beam can break through the restriction of the diffraction limit on the spatial resolution of the microscopic system without losing the energy and spectral bandwidth of the THz field. In this paper, firstly, a white-light nanoscopy based on photonic nanojet produced by microspheres is introduced, then the THz microscopy based on terajet effect produced by mesoscopic dielectric structures is reviewed. Finally, the prospect of THz high resolution imaging technology based on terajet effect is prospected.
  • 加载中
  • [1] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417-9431. doi: 10.1364/OE.26.009417

    CrossRef Google Scholar

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [3] Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8-9): 976-1019. doi: 10.1007/s10762-011-9809-2

    CrossRef Google Scholar

    [4] Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874-27885. doi: 10.1364/OE.25.027874

    CrossRef Google Scholar

    [5] Zinov'ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. doi: 10.1134/S0021364008200058

    CrossRef Google Scholar

    [6] Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834-1841. doi: 10.1109/TAP.2010.2046860

    CrossRef Google Scholar

    [7] Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180. doi: 10.1038/s41598-018-36642-3

    CrossRef Google Scholar

    [8] Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165-173. doi: 10.1109/TTHZ.2017.2781462

    CrossRef Google Scholar

    [9] Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834-6839. doi: 10.1364/AO.49.006834

    CrossRef Google Scholar

    [10] Hunsche S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1997, 150(1-6): 22-26.

    Google Scholar

    [11] Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591-593. doi: 10.1063/1.127054

    CrossRef Google Scholar

    [12] Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608-614. doi: 10.1109/2944.974232

    CrossRef Google Scholar

    [13] Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496-3498. doi: 10.1063/1.1328772

    CrossRef Google Scholar

    [14] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009-3011. doi: 10.1063/1.1616668

    CrossRef Google Scholar

    [15] van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558-1560. doi: 10.1063/1.1503404

    CrossRef Google Scholar

    [16] Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549-552. doi: 10.1021/nl503998v

    CrossRef Google Scholar

    [17] Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676-2680. doi: 10.1021/acsphotonics.7b00870

    CrossRef Google Scholar

    [18] Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058-2060. doi: 10.1364/OL.28.002058

    CrossRef Google Scholar

    [19] Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115-120. doi: 10.1364/OPEX.13.000115

    CrossRef Google Scholar

    [20] Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169-171. doi: 10.1088/0256-307X/24/1/046

    CrossRef Google Scholar

    [21] 杨玉平, 施宇蕾, 严伟, 等.一种新型THz显微探测技术[J], 物理学报, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021

    CrossRef Google Scholar

    Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079-4083. doi: 10.3321/j.issn:1000-3290.2005.09.021

    CrossRef Google Scholar

    [22] Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880. doi: 10.1038/srep03880

    CrossRef Google Scholar

    [23] Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120. doi: 10.1063/1.2387984

    CrossRef Google Scholar

    [24] Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017. doi: 10.1117/1.JBO.20.3.036017

    CrossRef Google Scholar

    [25] Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105. doi: 10.1063/1.4926967

    CrossRef Google Scholar

    [26] Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-24. doi: 10.1364/OL.44.000021

    CrossRef Google Scholar

    [27] Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. doi: 10.1038/ncomms1211

    CrossRef Google Scholar

    [28] Pacheco-Peña V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102. doi: 10.1063/1.4894243

    CrossRef Google Scholar

    [29] Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105. doi: 10.1063/1.5026758

    CrossRef Google Scholar

    [30] Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. doi: 10.1063/1.3662010

    CrossRef Google Scholar

    [31] Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. doi: 10.1063/1.4757600

    CrossRef Google Scholar

    [32] Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710. doi: 10.1088/2040-8978/15/12/125710

    CrossRef Google Scholar

    [33] Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104.

    Google Scholar

    [34] Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super-resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876. doi: 10.1002/smll.201470055

    CrossRef Google Scholar

    [35] Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101. doi: 10.1063/1.5011067

    CrossRef Google Scholar

    [36] Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. doi: 10.1021/nn406201q

    CrossRef Google Scholar

    [37] Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479-16486. doi: 10.1364/OE.24.016479

    CrossRef Google Scholar

    [38] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255

    CrossRef Google Scholar

    [39] Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220. doi: 10.1364/OPEX.12.001214

    CrossRef Google Scholar

    [40] Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120-4123. doi: 10.1364/OL.39.004120

    CrossRef Google Scholar

    [41] Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3. doi: 10.1140/epjti/s40485-017-0038-5

    CrossRef Google Scholar

    [42] Pacheco-Peña V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245-248. doi: 10.1364/OL.40.000245

    CrossRef Google Scholar

    [43] Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102. doi: 10.1063/1.4949014

    CrossRef Google Scholar

    [44] Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105. doi: 10.1063/1.4983640

    CrossRef Google Scholar

    [45] Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106. doi: 10.1063/1.4983114

    CrossRef Google Scholar

    [46] Minin I V, Minin O V, Pacheco-Peña V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102. doi: 10.1063/1.4923186

    CrossRef Google Scholar

    [47] Minin I V, Minin O V, Pacheco-Peña V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329-2332. doi: 10.1364/OL.40.002329

    CrossRef Google Scholar

    [48] Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546-552. doi: 10.1007/s10762-018-0479-1

    CrossRef Google Scholar

    [49] Minin I V, Minin O V. Terajet from 3D anisotropic artificial metamaterial[C]//Proceedings of 2016 13th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering, 2016: 142-144.https://ieeexplore.ieee.org/abstract/document/7802237

    Google Scholar

    [50] Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326. doi: 10.1007/s11082-017-1165-6

    CrossRef Google Scholar

    [51] Cruz A L S, Cordeiro C M B, Franco M A R. Enhanced Terahertz transmission through 3D non-spherical terajets[J]. Proceedings of SPIE, 2015, 9634: 963412.

    Google Scholar

    [52] Niu L T, Wang K J, Yang Y Q, et al. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging[J]. IEEE Photonics Journal, 2019, 11(1): 5900212.

    Google Scholar

    [53] Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471-475. doi: 10.1109/TTHZ.2019.2926630

    CrossRef Google Scholar

    [54] Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1-2.

    Google Scholar

    [55] Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606.

    Google Scholar

    [56] Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703. doi: 10.1063/1.4973764

    CrossRef Google Scholar

  • Overview: In the past decades, great advancements have been made to achieve super-resolution imaging, including near-field THz microscopy, metamaterial superlens, fluorescence microscopy and so on, pushing the resolution to ñm or nm scale. Unfortunately, applications of these methods have been limited in part due to their complication in access and operation, loss of energy and spectral bandwidth, difficulty in information extraction or limited choices of samples. Thus, it is highly desired to develop innovative super-resolution THz imaging modality that is easily accessible and low-cost. Fortunately, at visible frequencies, a unique easy-access super-resolution imaging where dielectric microsphere with appropriate refractive index has been presented and delivered a remarkable 50 nm resolution with white lights in 2010. Furthermore, super-resolution imaging was also presented with a large field-of-view using large polystyrene microspheres (above 30 μm). A strong continuing interest in the technique has led to numerous progress in visible light. In these works, the super-resolution capability of microspheres is determined by the "photonic nanojet" and coupling with evanescent waves. More recently, a straightforward THz imaging method based on terajet effect, analogous to microsphere optical nanoscope, is proposed and developed with spatial resolution beyond the diffraction limit by using either continuous or pulsed THz wave. The terajet beam can break through the restriction of the diffraction limit on the spatial resolution of the microscopic system without losing the energy and spectral bandwidth of the THz field, i.e., a high-resolution, high-throughput and broad-bandwidth THz imaging method. Also, with the extensively longer wavelength of the THz wave, the size of the dielectric spheres is much larger (on the order of millimeters), the spheres are easier to fabricate, simple to manipulate, and capable of handling energy and bandwidth losses. In addition, as unique spectroscopic technique, THz imaging reveals much richer subwavelength structural information, including frequency-dependent amplitude and phase, as well as time-dependent delay and thickness. In this review, firstly, a white-light nanoscopy based on photonic nanojet produced by microspheres is introduced, then the terahertz microscopy based on terajet effect produced by mesoscopic dielectric structures is reviewed. Finally, the prospect of terahertz high resolution imaging technology based on terajet effect is prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint