Citation: |
|
[1] | Vedachalam N, Ramesh R, Jyothi V B N, et al. Autonomous underwater vehicles-challenging developments and technological maturity towards strategic swarm robotics systems[J]. Marine Georesources & Geotechnology, 2019, 37(5): 525–538. |
[2] | Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 2019, 94: 101935. doi: 10.1016/j.adhoc.2019.101935 |
[3] | Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/MCOM.2009.4752682 |
[4] | Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977. doi: 10.1121/1.419304 |
[5] | Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204–238. |
[6] | Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1991, 1537: 151–160. doi: 10.1117/12.48880 |
[7] | Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226–234. doi: 10.1109/TCOMM.2013.120713.130199 |
[8] | Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEE Transactions on Communications, 1976, 24(1): 66–81. doi: 10.1109/TCOM.1976.1093200 |
[9] | Longacre J R, Freeman D E, Snow J B. High-data-rate underwater laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439. doi: 10.1117/12.21462 |
[10] | Snow J B, Flatley J P, Freeman D E, et al. Underwater propagation of high-data-rate laser communications pulses[J]. Proceedings of SPIE, 1992, 1750: 419–427. doi: 10.1117/12.140670 |
[11] | Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277–283. doi: 10.1364/AO.47.000277 |
[12] | Lu D L, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53. |
[13] | Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502–25509. doi: 10.1364/OE.24.025502 |
[14] | Xu J, Song Y H, Yu X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097–8109. doi: 10.1364/OE.24.008097 |
[15] | Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 7906107. |
[16] | Kong M W, Lv W C, Ali T, et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829–20834. doi: 10.1364/OE.25.020829 |
[17] | Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739–1745. doi: 10.1109/JLT.2017.2782840 |
[18] | Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 2017, 25(10): 11598–11605. doi: 10.1364/OE.25.011598 |
[19] | Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947. doi: 10.1364/OE.25.027937 |
[20] | Fei C, Hong X J, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060–34069. doi: 10.1364/OE.26.034060 |
[21] | Fei C, Zhang J W, Zhang G W, et al. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728–734. doi: 10.1109/JLT.2017.2780841 |
[22] | Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558–561. doi: 10.1364/OL.44.000558 |
[23] | Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2. |
[24] | Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181. doi: 10.1364/OE.27.012171 |
[25] | Bluecomm 100-wireless underwater optical communication[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/. |
[26] | Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. Applied Optics, 2016, 55(31): 8860–8863. doi: 10.1364/AO.55.008860 |
[27] | Shi J Y, Zhu X, Wang F M, et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1–3. |
[28] | Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106–112. doi: 10.1016/j.optcom.2018.04.073 |
[29] | Tian P F, Liu X Y, Yi S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201. doi: 10.1364/OE.25.001193 |
[30] | Xu J, Kong M W, Lin A B, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664–1667. doi: 10.1364/OL.42.001664 |
[31] | Li C Y, Lu H H, Tsai W S, et al. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909. |
[32] | Kong M W, Chen Y F, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097. doi: 10.1364/OE.26.003087 |
[33] | Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2. |
[34] | Sui M H, Zhou Z G. The modified PPM modulation for underwater wireless optical communication[C]//Proceedings of 2009 International Conference on Communication Software and Networks, Macau, China, 2009: 173–177. |
[35] | Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 2018, 26(17): 21685–21699. doi: 10.1364/OE.26.021685 |
[36] |
杜劲松.基于LDPC编码与PPM调制的水下光通信研究[D].南京: 南京邮电大学, 2017.
Du J S. Research on underwater optical communication based on LDPC and PPM[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2017. |
[37] | Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 - Shanghai, Shanghai, China, 2016: 1–4. |
[38] | 肖嵩.无线信道中的联合信源信道编码研究[D].西安: 西安电子科技大学, 2004. Xiao S. Researches on joint source channel coding in wireless channel[D]. Xi'an: Xidian University, 2004. |
[39] | Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS 2008, Quebec City, QC, Canada, 2008: 1–6. |
[40] | Mattoussi F, Khalighi M A, Bourennane S. Improving the performance of underwater wireless optical communication links by channel coding[J]. Applied Optics, 2018, 57(9): 2115–2120. doi: 10.1364/AO.57.002115 |
[41] | Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109–121. doi: 10.1109/JLT.2006.888481 |
[42] | Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956–1976. doi: 10.1364/AO.35.001956 |
[43] | Zhang Z J, Zhao Y, Zhang J D, et al. Ranging accuracy improvement of time-correlated signal-photon counting lidar[J]. Proceedings of SPIE, 2017, 10605: 106050C. |
[44] | Li C, Wang B K, Wang P L, et al. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless communications[C]//Proceedings of 2016 Asia Communications and Photonics Conference, Wuhan, China, 2016: 1–3. |
[45] | Zhang Z Y, Lai Y J, Lv J L, et al. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019, 11(3): 7903812. |
[46] | Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306. doi: 10.1038/srep33306 |
[47] | Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. New York: Academic Press, 1994. |
[48] | Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972. |
[49] | Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513–521. doi: 10.1109/JOE.2008.2005341 |
[50] | Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEE Journal on Selected areas in Communications, 2008, 26(9): 1620–1627. doi: 10.1109/JSAC.2008.081202 |
[51] | Gabriel C, Khalighi M A, Bourennane S, et al. Monte-carlo-based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1–12. |
[52] | Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Applied Optics, 2002, 41(6): 1022–1028. doi: 10.1364/AO.41.001022 |
[53] | Sahu S K, Shanmugam P. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles[J]. Optics Express, 2015, 23(17): 22291–22307. doi: 10.1364/OE.23.022291 |
[54] | Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3–14. doi: 10.1016/j.optcom.2017.06.030 |
[55] | Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communications[J]. Applied Optics, 2018, 57(28): 8314–8319. doi: 10.1364/AO.57.008314 |
[56] | Ooi B S, Sun X B, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019. |
[57] | Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273–1278. doi: 10.1364/AO.54.001273 |
[58] | Oubei H M, Zedini E, ElAfandy R T, et al. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference, Singapore, Singapore, 2017: 1–2. |
[59] | Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455–2458. doi: 10.1364/OL.42.002455 |
[60] | Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302–23309. doi: 10.1364/OE.23.023302 |
[61] | Xu J, Lin A B, Yu X Y, et al. Underwater laser communication using an OFDM-modulated 520-nm laser diode[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2133–2136. |
[62] | Sullivan S A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum[J]. Journal of the Optical Society of America, 1963, 53(8): 962–968. |
[63] | Gilbert G D, Stoner T R, Jernigan J L. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser[J]. Proceedings of SPIE, 1966, 7: 8–14. |
[64] | Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233. |
[65] | Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805. |
[66] |
王超.水下可见光通信单光子检测关键技术研究[D].郑州: 战略支援部队信息工程大学, 2018.
Wang C. Research on the key technology of singlephoton detection in underwater visible light communications[D]. Zhengzhou: Information Engineering University, 2018. |
[67] | Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23): 28783–28793. |
[68] | Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311. |
[69] | Wang J L, Yang X Q, Lv W C, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181–185. |
[70] | Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//Proceedings of the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016: 1–5. |
[71] | Khalighi M A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 7905310. |
[72] | Shen J N, Wang J L, Yu C Y, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78–82. |
[73] | Shen J N, Wang J L, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565–23571. |
[74] | 韩彪, 赵卫, 汪伟, 等.面向水下应用的改进型光子计数通信方法[J].光学学报, 2016, 36(8): 0806004. Han B, Zhao W, Wang W, et al. Modified photon counting communication method for underwater application[J]. Acta Optica Sinica, 2016, 36(8): 0806004. |
[75] | Tang S J, Dong Y H, Zhang X D. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 16(10): 1688–1690. |
[76] | Zhang H H, Dong Y H. Link misalignment for underwater wireless optical communications[C]//Proceedings of 2015 Advances in Wireless and Optical Communications, Riga, Latvia, 2015: 215–218. |
[77] | Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002. |
[78] | Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019: 1–3. |
[79] | Kong M W, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94–98. |
[80] | Kong M W, Lin J M, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542–34551. |
[81] | Zhang H H, Dong Y H, Hui L K. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12): 2166–2169. |
[82] | Zhang H H, Dong Y H. Impulse response modeling for general underwater wireless optical MIMO links[J]. IEEE Communications Magazine, 2016, 54(2): 56–61. |
[83] | Jamali M V, Salehi J A. On the BER of multiple-input multiple-output underwater wireless optical communication systems[C]//Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015: 26–30. |
[84] | Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223–8237. |
[85] | Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 2017, 65(3): 1176–1192. |
[86] | Cossu G, Sturniolo A, Messa A, et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 2018, 36(23): 5371–5380. |
[87] | Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communication:——results of optical characteristic measurement at visible light band under water and communication tests with the prototype modem in the sea[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102-A(1): 156–167. doi: 10.1587/transfun.E102.A.156 |
[88] | Akhoundi F, Salehi J A, Tashakori A. Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882–891. |
[89] | Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 801–809. |
[90] | Jamali M V, Akhoundi F, Salehi J A. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4104–4116. |
[91] | Jamali M V, Chizari A, Salehi J A. Performance analysis of multi-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 2017, 29(5): 462–465. |
[92] | Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and performance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. |
[93] | Xu J, Sun B, Lyu W C, et al. Underwater fiber–wireless communication with a passive front end[J]. Optics Communications, 2017, 402: 260–264. |
[94] | Xu J, Sun B, Kong M W, et al. Underwater wireless optical communication using a blue-light leaky feeder[J]. Optics Communications, 2017, 397: 51–54. |
Overview: Ocean exploration urgently needs a more flexible and stable way of communication without cables. Underwater wireless optical communication (UWOC) owns strong competitiveness with the features of large capacity, strong anti-interference ability, and good confidentiality. With such advantages, UWOC has become an important scientific theme attracting worldwide attention. This paper introduces the recent research progress and basic link structures of UWOC, including transmitter, receiver, and a challenging channel. Light emitting diode (LED) and laser diode (LD) are two kinds of light sources commonly used in the UWOC system. LEDs, with a large divergence angle and low cost, are widely used in short-range UWOC. On the other hand, LDs characterized by highly coherent, directional output and larger bandwidth could realize a longer transmission distance at a higher data rate. For the modulation formats, on-off keying (OOK) is widely used in the UWOC systems. Other modulation formats are also used to improve the performance of the system. Channel coding like Reed-Solomon (RS) code, low density parity check (LDPC) code can maintain a stable communication link. At the receiver of UWOC, the most widely used optical detectors are positive-intrinsic-negative (PIN) diode and avalanche photodiode (APD). In addition, single photon avalanche diode (SPAD) and multi-pixel photon counter (MPPC) attract special attention due to ultra-high sensitivity for long-reach UWOC systems. The absorption, scattering, and turbulence in water lead to serious interference and degradation to the performance of UWOC. Therefore, a comprehensive study of the UWOC channel is essential for the design of a UWOC system. For UWOC channel modeling, numerical methods with lower computational complexity, are commonly used. This paper also explores system optimization schemes for UWOC. Multiplexing technologies, such as orthogonal frequency division multiplexing (OFDM), wavelength division multiplexing (WDM), and orbital angular momentum (OAM), can enhance the performance of UWOC by making full use of different optical degrees of freedom. The coverage of the UWOC link can be extended by using single-photon detectors. The underwater wireless optical network enables the connection of massive underwater vehicles, submarines, and sensors in a wider area. UWOC could also be combined with optical fiber communication to realize a longer transmission distance and a more flexible network. Test platforms are also useful for practical UWOC applications. In the future, UWOC is envisioned to play an increasingly important role in ocean exploration. This review is expected to be helpful to the researchers in this field.
The demand of wireless communication in human underwater activities
Research progress on UWOC in recent years
The block diagram of underwater wireless optical communication system
The received optical power distribution of a laser beam after passing through a (a) 4 m, (b) 8 m, (c) 12 m costal water channel; (d) 4 m, (e) 8 m, (f) 12 m harbor water channel
(a) Impulse response and (b) frequency response in 8 m harbor water with different wavelengths based on Monte Carlo simulation
(a) Experiment setup of a MPPC based UWOC system.
Test basin