Tang T, Ma J G, Chen H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electron Eng, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315
Citation: Tang T, Ma J G, Chen H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electron Eng, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315

A review on precision control methodologies for optical-electric tracking control system

    Fund Project: Supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences
More Information
  • Precision control methodologies are necessary to implement high-precision optical-electric tracking performance, and depend on structural configuration, actuator drive, sensors, control algorithm and load platform. However, the optical-electric tracking system is facing with the three key technologies, disturbance rejection, target tracking and distributed intelligent coordination, both foundation platform and moving platform. In this paper, precision control methodologies aiming at the above several key technical problems are summarized, and the research results of some advanced and frontier control technologies are presented, and the main ideas of the future key research directions are pointed out. In addition, the research progress and hotspot of disturbance rejection technology from three aspects of precision drive, inertial stability as well as vibration control according to the different mechanism of disturbance influence are introduced, and the integrated technology of vibration and direction based on Stewart platform is an important technical direction of space optical-electric tracking system are emphasized. The composite axis control system is still the most effective fundamental way to improve the target tracking, and the most essential technical problem is to improve the closed-loop performance of the tip-tilt mirror system in precision tracking. It has to be mentioned that observer control is especially suitable for composite axis optical-electric tracking system, especially the observer technology based solely on error, and the development of three or more advanced composite shaft systems has to pay special attention to the application of high performance motors. Eventually, it is proposed that multi-intelligence cooperative optoelectronic system is the key development direction in the field of optical-electric tracking in the future, and it is necessary for the system to develop multi-agent cooperative positioning, formation control and load platform integration and other precise control technologies.
  • 加载中
  • [1] Ulich B L. Overview of acquisition, tracking, and pointing system technologies[J]. Proceedings of SPIE, 1988, 887: 40–63. doi: 10.1117/12.944208

    CrossRef Google Scholar

    [2] Bigley W J. Supervisory control of electro-optic tracking and pointing[J]. Proceedings of SPIE, 1990, 1304: 207–218. doi: 10.1117/12.21566

    CrossRef Google Scholar

    [3] Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration[J]. Proceedings of SPIE, 2012, 8264: 82460C.

    Google Scholar

    [4] 李生良, 王毅.用于精密跟踪的复合轴伺服系统[J].光学 精密工程, 1980(2): 50–56.

    Google Scholar

    [5] 马佳光, 尹义林. 778光电经纬仪跟踪控制系统[J].光学工程, 1986(1): 54–64.

    Google Scholar

    Ma J G, Yin Y L. The 778 tracking control system[J]. Opto-Electronic Engineering, 1986(1): 54–64.

    Google Scholar

    [6] 傅承毓, 马佳光, 叶步霞, 等.复合轴控制系统应用研究[J].光电工程, 1998, 25(4): 1–12.

    Google Scholar

    Fu C Y, Ma J G, Ye B X, et al. The application research of the composite axis control system[J]. Opto-Electronic Engineering, 1998, 25(4): 1–12.

    Google Scholar

    [7] 王毅, 高伟志, 王贵文, 等.光电精密跟踪的双重复合轴伺服系统[J].光学 精密工程, 1996, 4(4): 58–61.

    Google Scholar

    Wang Y, Gao W Z, Wang G W, et al. Dual compound axis servo system of opto-electronic precision tracking[J]. Optics and Precision Engineering, 1996, 4(4): 58–61.

    Google Scholar

    [8] 王国民.天文光学望远镜轴系驱动方式发展概述[J].天文学进展, 2007, 25(4): 364–374.

    Google Scholar

    Wang G M. Review of drive style for astronomical optical telescope[J]. Progress in Astronomy, 2007, 25(4): 364–374.

    Google Scholar

    [9] Fujimoto Y, Murakami T, Oboe R. Advanced motion control for next-generation industrial applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1886–1888. doi: 10.1109/TIE.2016.2515992

    CrossRef Google Scholar

    [10] Sabanovic A. Challenges in motion control systems[J]. IEEJ Journal of Industry Applications, 2017, 6(2): 107–116.

    Google Scholar

    [11] Campbell M F, Reese E O. SOAR 4.2-m telescope: evolution of drive and pointing performance from early predictions to final testing[J]. Proceedings of SPIE, 2003, 4837: 308–316. doi: 10.1117/12.456985

    CrossRef Google Scholar

    [12] Stepp L M. Advanced technology optical telescopes V[J]. Proceedings of SPIE, 1994, 2199: 117–125. doi: 10.1117/12.176182

    CrossRef Google Scholar

    [13] Li G P, Gu B Z, Yang D H, et al. Structure design and analysis of the special mounting and tracking system of the LAMOST[J]. Proceedings of SPIE, 2003, 4837: 284–294. doi: 10.1117/12.457957

    CrossRef Google Scholar

    [14] Du F J, Wang D X. The ultra-low speed research on friction drive of large telescope[J]. Proceedings of SPIE, 2006, 6274: 627410. doi: 10.1117/12.663713

    CrossRef Google Scholar

    [15] Rao C, Wei K, Zhang X, et al. First observations on the 127-element adaptive optical system for 1.8m telescope[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2010, 7654: 76541H.

    Google Scholar

    [16] Fugate R Q, Ruane R E, Ellerbroek B L. Advanced Technology Optical Telescopes V[J]. SPIE, 1994: 2–9.

    Google Scholar

    [17] Paris N D. LQG/LTR tilt and tip control for the starfire optical range 3.5-meter telescope's adaptive optics system[M]. Captain, USAF, March 2006.

    Google Scholar

    [18] Kimbrell J E, Greenwald D. AEOS 3.67-m telescope primary mirror active control system[J]. Proceedings of SPIE, 1998, 3352: 400–411. doi: 10.1117/12.319261

    CrossRef Google Scholar

    [19] Leonardi F, Venturini M, Vismara A. PM motors for direct driving optical telescope[J]. IEEE Industry Applications Magazine, 1996, 2(4): 10–16. doi: 10.1109/2943.503523

    CrossRef Google Scholar

    [20] Lewis H. Telescope control systems Ⅲ[J]. Proceedings of SPIE, 1998, 3351: 361–366. doi: 10.1117/12.308832

    CrossRef Google Scholar

    [21] Barnard T W, Fencil C R. Digital laser ranging and tracking using a compound axis servomechanism[J]. Applied Optics, 1966, 5(4): 497–505. doi: 10.1364/AO.5.000497

    CrossRef Google Scholar

    [22] 马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光电工程, 1989(3): 1–10.

    Google Scholar

    Ma J G. The basic technologies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989(3): 1–10.

    Google Scholar

    [23] 马佳光, 唐涛.复合轴精密跟踪技术的应用与发展[J].红外与激光工程, 2013, 42(1): 218–227.

    Google Scholar

    Ma J G, Tang T. Review of compound axis servomechanism tracking control technology[J]. Infrared and Laser Engineering, 2013, 42(1): 218–227.

    Google Scholar

    [24] 王红红, 陈方斌, 寿少峻, 等.基于FSM的高精度光电复合轴跟踪系统研究[J].应用光学, 2010, 31(6): 909–913.

    Google Scholar

    Wang H H, Chen F B, Shou S J, et al. High precision electro-optical tracking system based on fast steering mirror[J]. Journal of Applied Optics, 2010, 31(6): 909–913.

    Google Scholar

    [25] 汪永阳.基于快速反射镜的高精度视轴稳定技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

    Google Scholar

    Wang Y Y. Research on high precision LOS stabilization technology based on fast steering mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.

    Google Scholar

    [26] 张士涛.音圈式大行程快速反射镜及其视轴稳定技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2019.

    Google Scholar

    Zhang S T. Research on large-scale fast-steering-mirror driven by voice coil motor and its line-of-sight stabilization technology[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.

    Google Scholar

    [27] 任戈.复合轴结构的运动关系分析[J].光电工程, 1995, 22(6): 41–46.

    Google Scholar

    Ren G. An analysis of kinematic relationship for compound-axis structure[J]. Opto-Electronic Engineering, 1995, 22(6): 41–46.

    Google Scholar

    [28] 吴琼雁, 王强, 彭起, 等.音圈电机驱动的快速控制反射镜高带宽控制[J].光电工程, 2004, 31(8): 15–18. doi: 10.3969/j.issn.1003-501X.2004.08.005

    CrossRef Google Scholar

    Wu Q Y, Wang Q, Peng Q, et al. Wide bandwidth control of fast-steering mirror driven by voice coil motor[J]. Opto-Electronic Engineering, 2004, 31(8): 15–18. doi: 10.3969/j.issn.1003-501X.2004.08.005

    CrossRef Google Scholar

    [29] 王强.高性能共轴跟踪系统工程应用研究[D].成都: 中国科学院光电技术研究所, 2007.

    Google Scholar

    [30] 亓波, 陈洪斌, 任戈, 等. 100 km量子纠缠分发实验捕获跟踪技术[J].光学 精密工程, 2013, 21(6): 1628–1634.

    Google Scholar

    Qi B, Chen H B, Ren G, et al. ATP technology for 100-kilometer quantum entanglement distribution experiment[J]. Optics and Precision Engineering, 2013, 21(6): 1628–1634.

    Google Scholar

    [31] 刘兴法, 马佳光, 刘顺发, 等.视轴偏角对三轴光电跟踪系统跟踪过程的影响[J].光电工程, 2005, 32(5): 4–8. doi: 10.3969/j.issn.1003-501X.2005.05.002

    CrossRef Google Scholar

    Liu X F, Ma J G, Liu S F, et al. Effect of declination angle of sight axis on three-axis photoelectric tracking system[J]. Opto-Electronic Engineering, 2005, 32(5): 4–8. doi: 10.3969/j.issn.1003-501X.2005.05.002

    CrossRef Google Scholar

    [32] 徐征峰, 陈洪斌, 刘顺发, 等.视轴偏心三轴跟踪机架指向精度分析[J].光电工程, 2007, 34(4): 12–16. doi: 10.3969/j.issn.1003-501X.2007.04.003

    CrossRef Google Scholar

    Xu Z F, Chen H B, Liu S F, et al. Analysis for pointing error of three-axis photoelectric theodolite with collimation axis eccentricity[J]. Opto-Electronic Engineering, 2007, 34(4): 12–16. doi: 10.3969/j.issn.1003-501X.2007.04.003

    CrossRef Google Scholar

    [33] 唐涛, 钟代军, 包启亮, 等.一种三轴望远镜的跟踪控制方法: CN201210135959.7[P]. 2014-05-28.

    Google Scholar

    Tang T, Zhong D J, Bao Q L, et al. Tracking control method of three-axis telescope[P]. 2014-05-28

    Google Scholar

    [34] 葛志梁, 朱能鸿, 郑义劲.三轴无盲区望远镜机架方案[J].天文学进展, 2009, 27(2): 183–188.

    Google Scholar

    Ge Z L, Zhu N H, Zheng Y J. The design of a 3-axis mount without blind area[J]. Progress in Astronomy, 2009, 27(2): 183–188.

    Google Scholar

    [35] Hilkert J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26–46. doi: 10.1109/MCS.2007.910256

    CrossRef Google Scholar

    [36] 毕永利.多框架光电平台控制系统研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2004.

    Google Scholar

    Bi Y L. Study on control system of multi-frame photoelectric platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004.

    Google Scholar

    [37] 贾平, 张葆.航空光电侦察平台关键技术及其发展[J].光学 精密工程, 2003, 11(1): 82–88.

    Google Scholar

    Jia P, Zhang B. Critical technologies and their development for airborne opto-electronic reconnaissance platforms[J]. Optics and Precision Engineering, 2003, 11(1): 82–88.

    Google Scholar

    [38] 纪明.多环架光电稳定系统及分析[J].应用光学, 1994, 15(3): 60–64.

    Google Scholar

    Ji M. Multiple-gimbal optical/electronical stabilization system and analysis[J]. Journal of Applied Optics, 1994, 15(3): 60–64.

    Google Scholar

    [39] 申帅.宽频振动条件下航空光电平台视轴稳定技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

    Google Scholar

    Shen S. Study on optical axis stability technology of airborne photoelectric platform under broadband vibration condition[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.

    Google Scholar

    [40] 叶盛祥, 谢德林, 杨虎, 等.光电对抗技术[J].光电工程, 2001, 28(1): 67–72. doi: 10.3969/j.issn.1003-501X.2001.01.016

    CrossRef Google Scholar

    Ye S X, Xie D L, Yang H, et al. Photo-countermeasures technique[J]. Opto-Electronic Engineering, 2001, 28(1): 67–72. doi: 10.3969/j.issn.1003-501X.2001.01.016

    CrossRef Google Scholar

    [41] Xia Y X, Bao Q L, Liu Z D. A new disturbance feedforward control method for electro-optical tracking system line-of-sight stabilization on moving platform[J]. Sensors, 2018, 18(12): 4350. doi: 10.3390/s18124350

    CrossRef Google Scholar

    [42] 夏运霞.运动平台中惯性稳定控制技术研究[D].成都: 中国科学院研究生院(光电技术研究所), 2013.

    Google Scholar

    Xia Y X. Study on control techniques of inertial stabilization on moving platform[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013.

    Google Scholar

    [43] 毛耀.运动平台光电系统的视轴稳定技术研究[D].北京: 中国科学院大学, 2012.

    Google Scholar

    [44] 魏伟.高精度机载光电平台视轴稳定技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    Google Scholar

    Wei W. The research of optical axis stabilization of the airborne photoelectric platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.

    Google Scholar

    [45] Tian J, Yang W S, Peng Z M, et al. Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization[J]. Optical Engineering, 2016, 55(11): 111602. doi: 10.1117/1.OE.55.11.111602

    CrossRef Google Scholar

    [46] Bahcall N A. The hubble space telescope[J]. Annals of the New York Academy of Sciences, 1986, 470(1): 331–337.

    Google Scholar

    [47] Dunham E, Collins P, Reinacher A, et al. SOFIA image motion compensation[J]. Proceedings of SPIE, 2010, 7735: 77355X. doi: 10.1117/12.857731

    CrossRef Google Scholar

    [48] Ruderman M, Iwasaki M, Chen W H. Motion-control techniques of today and tomorrow: a review and discussion of the challenges of controlled motion[J]. IEEE Industrial Electronics Magazine, 2020, 14(1): 41–55. doi: 10.1109/MIE.2019.2956683

    CrossRef Google Scholar

    [49] Devasia S, Eleftheriou E, Moheimani S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5): 802–823. doi: 10.1109/TCST.2007.903345

    CrossRef Google Scholar

    [50] Tang T, Niu S X, Ma J G, et al. A review on control methodologies of disturbance rejections in optical telescope[J]. Opto-Electronic Advances, 2019, 2(10): 190011.

    Google Scholar

    [51] Zhao S, Gao Z Q. An active disturbance rejection based approach to vibration suppression in two‐inertia systems[J]. Asian Journal of Control, 2013, 15(2): 350–362. doi: 10.1002/asjc.552

    CrossRef Google Scholar

    [52] Chen X, Tomizuka M. Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(11): 1459–1474. doi: 10.1002/acs.2546

    CrossRef Google Scholar

    [53] Hutchinson S, Hager G D, Corke P I. A tutorial on visual servo control[J]. IEEE Transactions on Robotics and Automation, 1996, 12(5): 651–670. doi: 10.1109/70.538972

    CrossRef Google Scholar

    [54] Sun X Y, Zhu X J, Wang P Y, et al. A review of robot control with visual servoing[C]//2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2018: 116–121.

    Google Scholar

    [55] 唐涛, 黄永梅, 张桐, 等.负载加速度反馈的伺服系统谐振抑制[J].光电工程, 2007, 34(7): 14–17. doi: 10.3969/j.issn.1003-501X.2007.07.003

    CrossRef Google Scholar

    Tang T, Huang Y M, Zhang T, et al. Reduction of mechanical resonance based on load acceleration feedback for servo system[J]. Opto-Electronic Engineering, 2007, 34(7): 14–17. doi: 10.3969/j.issn.1003-501X.2007.07.003

    CrossRef Google Scholar

    [56] 邱晓波, 窦丽华, 单东升, 等.光电跟踪系统自抗扰伺服控制器的设计[J].光学 精密工程, 2010, 18(1): 220–226.

    Google Scholar

    Qiu X B, Dou L H, Shan D S, et al. Design of active disturbance rejection controller for electro-optical tracking servo system[J]. Optics and Precision Engineering, 2010, 18(1): 220–226.

    Google Scholar

    [57] 王婉婷, 郭劲, 姜振华, 等.光电跟踪自抗扰控制技术研究[J].红外与激光工程, 2017, 46(2): 0217003.

    Google Scholar

    Wang W T, Guo J, Jiang Z H, et al. Study on photoelectric tracking system based on ADRC[J]. Infrared and Laser Engineering, 2017, 46(2): 0217003.

    Google Scholar

    [58] Liu J, Li H W, Deng Y T. Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3655–3671. doi: 10.1109/TPEL.2017.2711098

    CrossRef Google Scholar

    [59] Tang T, Niu S X, Yang T, et al. Vibration rejection of Tip-Tilt mirror using improved repetitive control[J]. Mechanical Systems and Signal Processing, 2019, 116: 432–442. doi: 10.1016/j.ymssp.2018.06.060

    CrossRef Google Scholar

    [60] Tang T, Niu S X, Chen X Q, et al. Disturbance observer-based control of tip-tilt mirror for mitigating telescope vibrations[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2785–2791. doi: 10.1109/TIM.2018.2869437

    CrossRef Google Scholar

    [61] Chen W H, Yang J, Guo L, et al. Disturbance-observer-based control and related methods—an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083–1095. doi: 10.1109/TIE.2015.2478397

    CrossRef Google Scholar

    [62] Wu C H, Paul R P. Manipulator compliance based on Joint torque control[C]//1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, 1980: 88–94.

    Google Scholar

    [63] Luh J, Fisher W, Paul R. Joint torque control by a direct feedback for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(2): 153–161. doi: 10.1109/TAC.1983.1103215

    CrossRef Google Scholar

    [64] De Jager B. Acceleration assisted tracking control[J]. IEEE Control Systems Magazine, 2002, 14(5): 20–27.

    Google Scholar

    [65] Younkin G W. Compensating structural dynamics for servo driven industrial machines with acceleration feedback[C]//Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting, 2004.

    Google Scholar

    [66] Han J D, Wang Y C, Tan D L, et al. Acceleration feedback control for direct-drive motor system[C]//2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), 2000.

    Google Scholar

    [67] Han J A, Qiu Z C, Wang Y C, et al. Discontinuous control for harmonic drive system with the damping enhancement of acceleration feedback[C]//1999 IEEE Canadian Conference on Electrical and Computer Engineering, 1999.

    Google Scholar

    [68] Xu W L, Han J D, Tso S K, et al. Contact transition control via joint acceleration feedback[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1): 150–158. doi: 10.1109/41.824137

    CrossRef Google Scholar

    [69] Andersen T, Zurbuchen R. Acceleration feedback applied to the 3.6 m telescope servosystem[R]. ESO Technical Report No. 7, 1976.

    Google Scholar

    [70] Sedghi B, Bauvir B, Dimmler M. Acceleration feedback control on an AT[J]. Proceedings of SPIE, 2008, 7012: 70121Q. doi: 10.1117/12.789333

    CrossRef Google Scholar

    [71] Ren W, Deng C, Mao Y, et al. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system[J]. Optical Engineering, 2017, 56(8): 085101. doi: 10.1117/1.OE.56.8.085101

    CrossRef Google Scholar

    [72] Choi Y J, Yang K, Chung W K, et al. On the robustness and performance of disturbance observers for second-order systems[J]. IEEE Transactions on Automatic Control, 2003, 48(2): 315–320. doi: 10.1109/TAC.2002.808491

    CrossRef Google Scholar

    [73] Kim B K, Chung W K. Advanced disturbance observer design for mechanical positioning systems[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1207–1216. doi: 10.1109/TIE.2003.819695

    CrossRef Google Scholar

    [74] Shim H, Jo N H. An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer[J]. Automatica, 2009, 45(1): 296–299. doi: 10.1016/j.automatica.2008.10.009

    CrossRef Google Scholar

    [75] Deng C, Tang T, Mao Y, et al. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]. IEEE Photonics Journal, 2017, 9(3): 6802211.

    Google Scholar

    [76] Wang Q, Cai H X, Huang Y M, et al. Acceleration feedback control (AFC) enhanced by disturbance observation and compensation (DOC) for high precision tracking in telescope systems[J]. Research in Astronomy and Astrophysics, 2016, 16(8): 51–60.

    Google Scholar

    [77] Tang T, Zhang T, Du J F, et al. Acceleration feedback of a current-following synchronized control algorithm for telescope elevation axis[J]. Research in Astronomy and Astrophysics, 2016, 16(11): 7–12.

    Google Scholar

    [78] Tang T, Chen S, Huang X L, et al. Combining load and motor encoders to compensate nonlinear disturbances for high precision tracking control of gear-driven gimbal[J]. Sensors, 2018, 18(3): 754. doi: 10.3390/s18030754

    CrossRef Google Scholar

    [79] Kennedy P J, Kennedy R L. Direct versus indirect line of sight (LOS) stabilization[J]. IEEE Transactions on Control Systems Technology, 2003, 11(1): 3–15. doi: 10.1109/TCST.2002.806443

    CrossRef Google Scholar

    [80] Hilkert J M. A comparison of inertial line-of-sight stabilization techniques using mirrors[J] Proceedings of SPIE, 2004, 5430: 13–22. doi: 10.1117/12.541808

    CrossRef Google Scholar

    [81] 洪华杰, 王学武, 翁干飞.光电侦察装备中的反射镜稳定技术[J].应用光学, 2011, 32(4): 591–597.

    Google Scholar

    Hong H J, Wang X W, Weng G F. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics, 2011, 32(4): 591–597.

    Google Scholar

    [82] Satyarthi S. Optical line-of-sight steering using gimbaled mirrors[J]. Proceedings of SPIE, 2014, 9076: 90760E.

    Google Scholar

    [83] Hilkert J M, Cohen S. Development of mirror stabilization line-of-sight rate equations for an unconventional sensor-to-gimbal orientation[J]. Proceedings of SPIE, 2009, 7338: 733803-01–733803-12.

    Google Scholar

    [84] Luniewicz M F, Murphy J, O'Neil E, et al. Testing the inertial pseudo-star reference unit[J]. Proceedings of SPIE, 1994, 2221: 638–649. doi: 10.1117/12.178969

    CrossRef Google Scholar

    [85] Algrain M C, Woehrer M K. Determination of attitude jitter in small satellites[J]. Proceedings of SPIE, 1996, 2739: 215–228. doi: 10.1117/12.241918

    CrossRef Google Scholar

    [86] Walter R E, Danny H, Donaldson J. Stabilized inertial measurement system (SIMS)[J]. Proceedings of SPIE, 2002, 4724: 57–68. doi: 10.1117/12.472362

    CrossRef Google Scholar

    [87] Eckelkamp-Baker D, Sebesta H R. Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control: 20050161578[P]. 2005-07-28.

    Google Scholar

    [88] 胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].长沙: 国防科学技术大学, 2005.

    Google Scholar

    Hu H J. Line-of-sight stabilization of acquisition, tracking and pointing system on moving bed[D]. Changsha: National University of Defense Technology, 2005.

    Google Scholar

    [89] Mao Y, Ren W, Yu W, et al. Characteristic analysis and robust control design of double-stage precision stabilized platform[J]. Sensors and Actuators A: Physical, 2019, 300: 111636. doi: 10.1016/j.sna.2019.111636

    CrossRef Google Scholar

    [90] Tursun M, Eşkinat E. Suppression of vibration using passive receptance method with constrained minimization[J]. Shock and Vibration, 2008, 15(6): 639–654. doi: 10.1155/2008/858307

    CrossRef Google Scholar

    [91] Thorby D. Structural Dynamics and Vibration in Practice[M]. Amsterdam: Elsevier/Butterworth-Heinemann, 2008: 21–22.

    Google Scholar

    [92] De Marneffe B. Active and passive vibration isolation and damping via shunted transducers[D]. Brussels: Universite Libre de Bruxelles, 2007: 67–69, 112–116.

    Google Scholar

    [93] Lin Z C, Liu K, Zhang W. Inertially stabilized platform for airborne remote sensing using magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 288–301.

    Google Scholar

    [94] De Marneffe B, Avraam M, Deraemaeker A, et al. Vibration isolation of precision payloads: a six-axis electromagnetic relaxation isolator[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 395–401. doi: 10.2514/1.39414

    CrossRef Google Scholar

    [95] Mashayekhi M J, Vahdati N. Application of tuned vibration absorbers in fluid mounts[J]. Shock and Vibration, 2009, 16(6): 565–580. doi: 10.1155/2009/672394

    CrossRef Google Scholar

    [96] Trankle T, Pedreiro N, Andersen G. Disturbance free payload flight system analysis and simulation methods[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.

    Google Scholar

    [97] Dewell L, Pedreiro N, Blaurock C, et al. Precision telescope pointing and spacecraft vibration isolation for the terrestrial planet finder coronagraph[J]. Proceedings of SPIE, 2005, 5899: 589902. doi: 10.1117/12.618939

    CrossRef Google Scholar

    [98] Chen C C, Hemmati H, Biswas A, et al. Simplified lasercom system architecture using a disturbance-free platform[J]. Proceedings of SPIE, 2006, 6105: 610505. doi: 10.1117/12.660264

    CrossRef Google Scholar

    [99] Pedreiro N, Carrier A, Lorell K, et al. Disturbance-free payload concept demonstration[C]//AIAA Guidance, Navigation, and Conference Control and Exhibit, 2002.

    Google Scholar

    [100] 王晓明.基于六维并联机构的空间光学载荷微振动环境模拟及指向稳定技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2019.

    Google Scholar

    Wang X M. Research on micro-vibration environment simulation and pointing stability technology of the space optical pavload based on six-DOF parallel mechanism[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.

    Google Scholar

    [101] Li W P, Huang H. Integrated optimization of actuator placement and vibration control for piezoelectric adaptive trusses[J]. Journal of Sound and Vibration, 2013, 332(7): 17–32.

    Google Scholar

    [102] 赵浩.双体卫星在指向控制中的建模与仿真研究[D].哈尔滨: 哈尔滨工业大学, 2013.

    Google Scholar

    Zhao H. Study on modeling and simulation of a satellite with a architecture of disturbance free payload in pointing control[D]. Harbin: Harbin Institute of Technology, 2013.

    Google Scholar

    [103] 杜超.一种双体卫星的动力学建模与控制研究[D].哈尔滨: 哈尔滨工业大学, 2015.

    Google Scholar

    Du C. Study on dynamic modeling and controlling if a satellite with a architecture of disturbance free payload[D]. Harbin: Harbin Institute of Technology, 2015.

    Google Scholar

    [104] Yun H, Liu L, Li Q, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543. doi: 10.1016/j.ast.2019.105543

    CrossRef Google Scholar

    [105] Antonello R, Branz F, Sansone F, et al. High precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Transactions on Industrial Electronics, 2020, doi: 10.1109/TIE.2020.2972452.

    CrossRef Google Scholar

    [106] Kaymak Y, Rojas-Cessa R, Feng J H, et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1104–1123.

    Google Scholar

    [107] Talmor A G, Harding Jr H, Chen C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[J]. Proceedings of SPIE, 2016, 9739: 97390G. doi: 10.1117/12.2218097

    CrossRef Google Scholar

    [108] 王建立.光电经纬仪电视跟踪、捕获快速运动目标技术的研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2002.

    Google Scholar

    Wang J L. Study on TV tracking system of O-E theodolite to track and acquire fast moving targets[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2002.

    Google Scholar

    [109] 王建立, 陈涛, 陈娟, 等.提高光电经纬仪跟踪快速运动目标能力的一种方法[J].光电工程, 2002, 29(1): 34–37. doi: 10.3969/j.issn.1003-501X.2002.01.010

    CrossRef Google Scholar

    Wang J L, Chen T, Chen J, et al. A method for improving the tracking ability of a photoelectric theodolite against the fast moving targets[J]. Opto-Electronic Engineering, 2002, 29(1): 34–37. doi: 10.3969/j.issn.1003-501X.2002.01.010

    CrossRef Google Scholar

    [110] 王超.预测技术在光电跟踪系统中的应用研究[D].长春: 长春理工大学, 2013.

    Google Scholar

    Wang C. Application research of prediction technology on optoelectronic tracking system[D]. Changchun: Changchun University of Science and Technology, 2013.

    Google Scholar

    [111] 黄永梅, 马佳光, 付承毓.目标速度预测在光电跟踪控制系统中的应用[J].红外与激光工程, 2004, 33(5): 477–481.

    Google Scholar

    Huang Y M, Ma J G, Fu C Y. Application of forecast of moving target velocity in electro-optical tracking control system[J]. Infrared and Laser Engineering, 2004, 33(5): 477–481.

    Google Scholar

    [112] 徐智勇, 傅承毓, 王满意, 等.用拟合函数法准确预测运动目标的轨迹[J].光电工程, 2000, 27(1): 17–19. doi: 10.3969/j.issn.1003-501X.2000.01.004

    CrossRef Google Scholar

    Xu Z Y, Fu C Y, Wang M Y, et al. Accurate prediction for trace of a moving target with fitting function method[J]. Opto-Electronic Engineering, 2000, 27(1): 17–19. doi: 10.3969/j.issn.1003-501X.2000.01.004

    CrossRef Google Scholar

    [113] 杨秀华.预测滤波技术在光电目标跟踪中的应用研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2004.

    Google Scholar

    Yang X H. Application research of prediction filtering technology on optoelectronic traget tracking[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004.

    Google Scholar

    [114] 刘廷霞.光电跟踪系统复合轴伺服控制技术的研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2005.

    Google Scholar

    Liu T X. The research of compound-axis servo control technique of O-E Tracking system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2005.

    Google Scholar

    [115] Majhi S, Atherton D P. Modified Smith predictor and controller for processes with time delay[J]. IEE Proceedings-Control Theory and Applications, 1999, 146(5): 359–366. doi: 10.1049/ip-cta:19990502

    CrossRef Google Scholar

    [116] Feliu-Batlle V, Pérez R R, García F J C, et al. Smith predictor based robust fractional order control: application to water distribution in a main irrigation canal pool[J]. Journal of Process Control, 2009, 19(3): 506–519. doi: 10.1016/j.jprocont.2008.05.004

    CrossRef Google Scholar

    [117] Ren W, Luo Y, He Q N, et al. Stabilization control of electro-optical tracking system with fiber-optic gyroscope based on modified smith predictor control scheme[J]. IEEE Sensors Journal, 2018, 18(19): 8172–8178. doi: 10.1109/JSEN.2018.2835147

    CrossRef Google Scholar

    [118] Hurák Z, Řezáč M. Delay compensation in a dual-rate cascade visual servomechanism[C]//49th IEEE Conference on Decision and Control (CDC), 2010.

    Google Scholar

    [119] Zhou X, Mao Y, Zhang C, et al. A comprehensive performance improvement control method by fractional order control[J]. IEEE Photonics Journal, 2018, 10(5): 7906811.

    Google Scholar

    [120] Tang T, Cai H X, Huang Y M, et al. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device–based tracking loop[J]. Optical Engineering, 2015, 54(10): 105107. doi: 10.1117/1.OE.54.10.105107

    CrossRef Google Scholar

    [121] Tao T, Ren G, Ma J G, et al. Compensating for some errors related to time delay in a charge-coupled-device-based fast steering mirror control system using a feedforward loop[J]. Optical Engineering, 2010, 49(7): 073005. doi: 10.1117/1.3467453

    CrossRef Google Scholar

    [122] Tao T, Tian J, Zhong D J, et al. Combining charge couple devices and rate sensors for the feedforward control system of a charge coupled device tracking loop[J]. Sensors, 2016, 16(7): 968. doi: 10.3390/s16070968

    CrossRef Google Scholar

    [123] Tang T, Yang T, Qi B, et al. Error-based feedforward control for a charge-coupled device tracking system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8172–8180. doi: 10.1109/TIE.2018.2884239

    CrossRef Google Scholar

    [124] Ren W, Mao Y, Li Z J, et al. Error-based feedforward control for optoelectronic tracking system[C]//2019 Chinese Automation Congress (CAC), 2019: 460–465.

    Google Scholar

    [125] Atsumi T, Yabui S. Quadruple-stage actuator system for magnetic-head positioning system in hard disk drives[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 9184–9194.

    Google Scholar

    [126] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401–420. doi: 10.1109/TAC.2005.864190

    CrossRef Google Scholar

    [127] Li T, Zhang J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises[J]. IEEE Transactions on Automatic Control, 2010, 55(9): 2043–2057. doi: 10.1109/TAC.2010.2042982

    CrossRef Google Scholar

    [128] Tang Y, Gao H J, Zou W, et al. Distributed synchronization in networks of agent systems with nonlinearities and random switchings[J]. IEEE Transactions on Cybernetics, 2013, 43(1): 358–370. doi: 10.1109/TSMCB.2012.2207718

    CrossRef Google Scholar

    [129] You K Y, Xie L H. Network topology and communication data rate for consensusability of discrete-time multi-agent systems[J]. IEEE Transactions on Automatic Control, 2011, 56(10): 2262–2275. doi: 10.1109/TAC.2011.2164017

    CrossRef Google Scholar

    [130] Olfati-Saber R. Distributed Kalman filter with embedded consensus filters[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2006.

    Google Scholar

    [131] Hu J W, Xie L H, Zhang C S. Diffusion Kalman filtering based on covariance intersection[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 891–902. doi: 10.1109/TSP.2011.2175386

    CrossRef Google Scholar

    [132] 宋世军, 罗锦锋.基于信息融合的光电跟踪系统高精度控制方法[J].激光杂志, 2019, 40(6): 154–157.

    Google Scholar

    Song S J, Luo J F. High precision control method of photoelectric tracking system based on information fusion[J]. Laser Journal, 2019, 40(6): 154–157.

    Google Scholar

    [133] Jasperneite J, Sauter T, Wollschlaeger M. Why we need automation models: handling complexity in industry 4.0 and the internet of things[J]. IEEE Industrial Electronics Magazine, 2020, 14(1): 29–40. doi: 10.1109/MIE.2019.2947119

    CrossRef Google Scholar

    [134] Monmasson E, Idkhajine L, Naouar M W. FPGA-based controllers[J]. IEEE Industrial Electronics Magazine, 2011, 5(1): 14–26. doi: 10.1109/MIE.2011.940250

    CrossRef Google Scholar

    [135] Jovanovic N, Martinache F, Guyon O, et al. The subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(955): 890–910. doi: 10.1086/682989

    CrossRef Google Scholar

    [136] Rao C H, Gu N T, Zhu L, et al. 1.8-m solar telescope in China: Chinese large solar telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(2): 024001. doi: 10.1117/1.JATIS.1.2.024001

    CrossRef Google Scholar

  • Overview: The optical-electric tracking system characterizes a high-dynamic tracking system with the only line of sight error available, and its tracking accuracy is one of the key indexes for the optical–electric tracking control system. Precision control methodologies are necessary tools to implement high-precision tracking performance. Facing different applying areas, the tracking control system has to have a different performance to satisfy with conditions, and need to require high-performance control techniques. In another way, control techniques promote the development of the tracking control system. In essence, control methodologies only push the closed-loop performance to close to sensor resolution. Obviously, there is no method to reach this point. So, it is necessary to investigate suitable control methodologies to improve performance of the tracking control system. The optical-electric tracking system from single stage type to the dual-stage type is inseparable from the progress of actuator, sensor, materials, and mechanical structures. But, due to complex disturbances and maneuver target inducing dynamic lag errors in the hash working condition, the tracking performance could not meet the mission. High control bandwidth is usually restricted in a finite sampling rate of a charge-coupled device (CCD) based tracking loop, which hinders a good closed-loop performance. As far as tracking control is concerned, a rate feedforward controller is usually used to improve the control performance; however, it is restricted by the line-of-sight (LOS) rate, which is required to be estimated due to only the LOS error available in the CCD-based tracking control system. Besides that, it is also affected by the inverse of the control model. Vibration rejection is a key technology of practical engineering, especially in optical telescopes with a stable accuracy of μrad level. The closed-loop performance of optical telescopes is largely determined by the control bandwidth, while it is severely limited by the low sampling rate and large time delay of the image sensor, so it is difficult to mitigate structural vibrations in optical telescopes, especially wideband vibrations because they exist universally and greatly affect the stability of the system. Different from general motion control and visual servoing system, the tracking system has to accommodate for being applied in different platforms, which requires solving the three problems of disturbance rejection, target tracking and cooperative position. This paper reviews and investigates state of art control techniques and methodologies in the tracking control system, and also looks into the future research.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(45)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint