Yin S Y, Guo H, Yan M, et al. Study on performance test plan of inorganic scintillator[J]. Opto-Electron Eng, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038
Citation: Yin S Y, Guo H, Yan M, et al. Study on performance test plan of inorganic scintillator[J]. Opto-Electron Eng, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038

Study on performance test plan of inorganic scintillator

    Fund Project: National Natural Science Foundation of China (11675205, 11675196), Youth Innovation Promotion Association CAS, and Foundation of State Key Laboratory of Particle Detection and Electronics (SKLPDE-ZZ-201902)
More Information
  • In order to respond to the scintillator screening requirements of large scientific projects and the new medical imaging equipment such as the development of large-scale collider experimental detectors, space load calorimeters and TOF-PET, our laboratory conducts research on the scintillation performance (emission spectrum, light output, energy resolution, decay time, afterglow, coincidence time resolution, etc.) of scintillators. A complete set of inorganic scintillator performance test programs is designed for the optimal performance of different scintillator samples. In the test of emission spectrum, different excitation sources were selected for comparison test. The energy resolution and the test conditions of the scintillation performance such as time resolution were optimized, which were successfully applied to the performance research of popular scintillators including cerium-doped yttrium lutetium silicate (LYSO: Ce) and gadolinium aluminum gallium garnet (GAGG: Ce), and good test results were obtained. The energy resolution of LYSO: Ce and ceramic GAGG: Ce scintillators are 7.9% and 5.4%, respectively, and the coincidence time resolution of the LYSO: Ce scintillator can reach 94.3 ps.
  • 加载中
  • [1] 任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001

    CrossRef Google Scholar

    Ren G H. Development history of inorganic scintillation crystals in China[J]. J Synth Cryst, 2019, 48(8): 1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001

    CrossRef Google Scholar

    [2] 杨熠, 尚珊珊, 陈艳林, 等. 无机闪烁材料研究进展[J]. 材料导报, 2016, 30(2): 87-91.

    Google Scholar

    Yang Y, Shang S S, Chen Y L, et al. Review of inorganic scintillation materials[J]. Mater Rev, 2016, 30(2): 87-91.

    Google Scholar

    [3] Zhu Y, Wang Z G, Qian S, et al. Study of characteristics of Ce-doped Gd3Al2Ga3O12 scintillator[C]//Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, 2019.

    Google Scholar

    [4] 李明慧, 牛萍娟, 董明义, 等. 基于波形采样的CEPC电磁量能器读出单元测试系统[J]. 核技术, 2018, 41(1): 010402.

    Google Scholar

    Li M H, Niu P J, Dong M Y, et al. A testing system of scintillator readout unit based on waveform sampling for CEPC ECAL[J]. Nucl Tech, 2018, 41(1): 010402.

    Google Scholar

    [5] Huang X Y, Lamperstorfer A S, Tsai Y L S, et al. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station[J]. Astropart Phys, 2016, 78: 35-42. doi: 10.1016/j.astropartphys.2016.02.003

    CrossRef Google Scholar

    [6] 严成锋, 赵广军, 张连翰, 等. 大尺寸Ce: Lu1.6Y0.4SiO5闪烁晶体的生长和光谱特性[J]. 无机材料学报, 2005, 20(6): 1301-1305. doi: 10.3321/j.issn:1000-324X.2005.06.004

    CrossRef Google Scholar

    Yan C F, Zhao G J, Zhang L H, et al. Crystal growth and optical characterization of large-sized cerium-doped Lu1.6Y0.4SiO5[J]. J Inorg Mater, 2005, 20(6): 1301-1305. doi: 10.3321/j.issn:1000-324X.2005.06.004

    CrossRef Google Scholar

    [7] Mao R H, Wu C, Dai L E, et al. Crystal growth and scintillation properties of LSO and LYSO crystals[J]. J Cryst Growth, 2013, 368: 97-100. doi: 10.1016/j.jcrysgro.2013.01.038

    CrossRef Google Scholar

    [8] Phunpueok A, Chewpraditkul W, Limsuwan P, et al. Light output and energy resolution of Lu0.7Y0.3AlO3: Ce and Lu1.95Y0.05SiO5: Ce scintillators[J]. Proced Eng, 2012, 32: 564-570. doi: 10.1016/j.proeng.2012.01.1309

    CrossRef Google Scholar

    [9] Ferri A, Gola A, Serra N, et al. Performance of FBK high-density SiPM technology coupled to Ce: LYSO and Ce: GAGG for TOF-PET[J]. Phys Med Biol, 2014, 59(4): 869-880. doi: 10.1088/0031-9155/59/4/869

    CrossRef Google Scholar

    [10] Calva-Coraza E, Alva-Sánchez H, Murrieta-Rodríguez T, et al. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays[J]. Phys Med, 2017, 42: 19.

    Google Scholar

    [11] Alva-Sanchez H, Murrieta T, Moreno-Barbosa E, et al. A small-animal PET system based on LYSO crystal arrays, PS-PMTs and a PCI DAQ board[J]. IEEE Trans Nucl Sci, 2010, 57(1): 85-93. doi: 10.1109/TNS.2009.2038052

    CrossRef Google Scholar

    [12] Akatsu M, Enari Y, Hayasaka K, et al. MCP-PMT timing property for single photons[J]. Nucl Instrum Meth Phys Res, 2004, 528(3): 763-775. doi: 10.1016/j.nima.2004.04.207

    CrossRef Google Scholar

    [13] https://www.hamamatsu.com/jp/en/product/optical-sensors/mppc/index.html.

    Google Scholar

    [14] Tamulaitis G, Auffray E, Gola A, et al. Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals[J]. J Phys Chem Solids, 2020, 139: 109356. doi: 10.1016/j.jpcs.2020.109356

    CrossRef Google Scholar

    [15] Zhu Y, Qian S, Wang Z G, et al. Scintillation properties of GAGG: Ce ceramic and single crystal[J]. Opt Mater, 2020, 105: 109964. doi: 10.1016/j.optmat.2020.109964

    CrossRef Google Scholar

    [16] Deprez K, Van Holen R, Vandenberghe S. A high resolution SPECT detector based on thin continuous LYSO[J]. Phys Med Biol, 2014, 59(1): 153-171. doi: 10.1088/0031-9155/59/1/153

    CrossRef Google Scholar

    [17] Atanov N, Baranov V, Colao F, et al. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment[J]. Nucl Instrum Methods Phys Res Sec A: Accel, Spectrom, Detect Assoc Equip, 2016, 824: 684-685. doi: 10.1016/j.nima.2015.09.051

    CrossRef Google Scholar

    [18] Wanarak C, Chewpraditkul W, Phunpueok A, et al. Luminescence and scintillation properties of Ce-doped LYSO and YSO crystals[J]. Adv Mater Res, 2011, 199-200: 1796-1803. doi: 10.4028/www.scientific.net/AMR.199-200.1796

    CrossRef Google Scholar

    [19] 袁鞠敏. 闪烁体发光衰减时间与光产额测试系统研制[D]. 济南: 山东大学, 2020.

    Google Scholar

    Yuan J M. Development of measurement system for scintillator decay time andlight yield[D]. Ji'nan: Shandong University, 2020.

    Google Scholar

    [20] Martins A F, Carreira J F C, Rodrigues J, et al. Spectroscopic analysis of LYSO: Ce crystals[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2017, 172: 163-167. doi: 10.1016/j.saa.2016.04.019

    CrossRef Google Scholar

    [21] Iwanowska J, Swiderski L, Szczesniak L, et al. Performance of cerium-doped Gd3Al2Ga3O12(GAGG: Ce) scintillator in gamma-ray spectrometry[J]. Nucl Instrum Methods Phys Res Sec A: Accel, Spectrom, Detect Assoc Equip, 2013, 712: 34-40. doi: 10.1016/j.nima.2013.01.064

    CrossRef Google Scholar

    [22] 冯大建, 丁雨憧, 刘军, 等. Ce: GAGG闪烁晶体生长与性能研究[J]. 压电与声光, 2016, 38(3): 430-432.

    Google Scholar

    Feng D J, Ding Y L, Liu J, et al. Study on the growth and scintillation properties of Ce: GAGG crystal[J]. Piezoelect Acoustoopt, 2016, 38(3): 430-432.

    Google Scholar

    [23] Tong Y, Yan Z W, Zeng H D, et al. Enhanced blue emission of SnO2 doped phosphate glasses by Gd2O3 co-doping[J]. J Lumin, 2014, 145: 438-442. doi: 10.1016/j.jlumin.2013.08.028

    CrossRef Google Scholar

    [24] 尹士玉, 陈鹏宇, 马丽双, 等. SiPM低压电源模块性能研究[J]. 核技术, 2019, 42(9): 090403.

    Google Scholar

    Yin S Y, Chen P Y, Ma L S, et al. Study of the low voltage power module for SiPM[J]. Nucl Technol, 2019, 42(9): 090403.

    Google Scholar

    [25] 董春辉, 马敏, 周荣, 等. SiPM耦合LYSO晶体探测器的能量分辨和时间分辨[J]. 核电子学与探测技术, 2017, 37(1): 1-3, 19. doi: 10.3969/j.issn.0258-0934.2017.01.001

    CrossRef Google Scholar

    Dong C H, Ma M, Zhou R, et al. Energy resolution and time resolution of SiPM coupled LYSO crystal detector[J]. Nucl Electron Detect Technol, 2017, 37(1): 1-3, 19. doi: 10.3969/j.issn.0258-0934.2017.01.001

    CrossRef Google Scholar

    [26] Kotera K, Choi W, Takeshita T. SiPM response functions representing wide range including linear behavior after saturation[Z]. arXiv: 1510.01102, 2016.

    Google Scholar

    [27] Eigen G, Lee G R. Light yield and uniformity measurements of different scintillator tiles with silicon photomultipliers[J]. J Instrum, 2020, 15(6): C06059. doi: 10.1088/1748-0221/15/06/C06059

    CrossRef Google Scholar

    [28] Limkitjaroenporn P, Sangwaranatee N, Chaiphaksa W, et al. Comparative studies of the light yield non-proportionality and energy resolution of CsI(Tl), LYSO and BGO scintillation crystals[J]. Mater Sci Forum, 2016, 872: 266-270. doi: 10.4028/www.scientific.net/MSF.872.266

    CrossRef Google Scholar

    [29] http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/R6427_R7056_TPMH1187E05.pdf.

    Google Scholar

    [30] http://lmu.web.psi.ch/docu/manuals/bulk_manuals/PMTs/xp2020.pdf.

    Google Scholar

    [31] Pan T, Einstein S A, Kappadath S C, et al. Performance evaluation of the 5-Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2-2012 Standard[J]. Med Phys, 2019, 46(7): 3025-3033. doi: 10.1002/mp.13576

    CrossRef Google Scholar

    [32] https://www.mouser.cn/datasheet/2/308/MICROJ-SERIES-D-1811589.pdf.

    Google Scholar

  • Overview: Inorganic scintillators have a history of more than sixty years of development in our country. During this period, many scintillators have been successfully developed and put on the market. They have excellent scintillation properties such as high density and high transmittance, as well as stable physical and chemical properties. Coupled with photodetectors, they become one of the core detectors in high-energy physics and nuclear physics experiments. At present, the demand for the physical characteristics of the scintillators has been transformed into high light yield, excellent energy resolution, and fast decay time. Some large-scale scientific projects and new medical imaging equipment, such as the development of large-scale collider experimental detectors, space load calorimeters and TOF-PET require a large number of high-performance scintillators. For this reason, it is urgent to develop and design a complete and convenient scintillator performance test program.

    With the development of the photoelectric field, a new type of fast photodetector with fast time response, strong anti-interference ability, small size and light weight has been developed. It is suitable for the detection of fast and extremely weak signals, and its time resolution can reach on the order of tens of picoseconds. The production of new fast photodetectors has also made the scintillator performance test enter a new stage, and the test accuracy will be significantly improved. As a result, an inorganic scintillator performance test plan for a new type of inorganic scintillator and a fast photodetector came into being.

    LYSO: Ce scintillator has attracted widespread attention due to its high light yield (25000 ph/MeV) and fast luminescence decay time (40 ns). The single crystal GAGG: Ce scintillator has a light yield of 30000 ph/MeV, and has two decay components: fast and slow. According to the difference of the decay time of the output pulse waveform, it is expected that the PSD method can be used to realize particle discrimination.

    The outstanding fluorescence performance advantages of LYSO: Ce scintillator and GAGG: Ce scintillator have set off a research boom. The light output of the LYSO: Ce scintillator is 27029 ph/MeV, the decay time is 40 ns, the energy resolution is 7.9%@662 keV, and the coincidence time resolution can reach 94.3 ps, which were measured by the inorganic scintillator performance test plan. At the same time, the light outputs of ceramic and single crystal GAGG: Ce are 59316 ph/MeV and 31405 ph/MeV, respectively, the energy resolution is 5.4%@662 keV and 7.1%@662 keV, and the decay time of ceramic GAGG: Ce is 182.9 ns. The decay time components of single crystal GAGG: Ce are 50.1 ns and 321.5 ns, respectively.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint