Citation: |
|
[1] | 任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001 Ren G H. Development history of inorganic scintillation crystals in China[J]. J Synth Cryst, 2019, 48(8): 1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001 |
[2] | 杨熠, 尚珊珊, 陈艳林, 等. 无机闪烁材料研究进展[J]. 材料导报, 2016, 30(2): 87-91. Yang Y, Shang S S, Chen Y L, et al. Review of inorganic scintillation materials[J]. Mater Rev, 2016, 30(2): 87-91. |
[3] | Zhu Y, Wang Z G, Qian S, et al. Study of characteristics of Ce-doped Gd3Al2Ga3O12 scintillator[C]//Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, 2019. |
[4] | 李明慧, 牛萍娟, 董明义, 等. 基于波形采样的CEPC电磁量能器读出单元测试系统[J]. 核技术, 2018, 41(1): 010402. Li M H, Niu P J, Dong M Y, et al. A testing system of scintillator readout unit based on waveform sampling for CEPC ECAL[J]. Nucl Tech, 2018, 41(1): 010402. |
[5] | Huang X Y, Lamperstorfer A S, Tsai Y L S, et al. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station[J]. Astropart Phys, 2016, 78: 35-42. doi: 10.1016/j.astropartphys.2016.02.003 |
[6] | 严成锋, 赵广军, 张连翰, 等. 大尺寸Ce: Lu1.6Y0.4SiO5闪烁晶体的生长和光谱特性[J]. 无机材料学报, 2005, 20(6): 1301-1305. doi: 10.3321/j.issn:1000-324X.2005.06.004 Yan C F, Zhao G J, Zhang L H, et al. Crystal growth and optical characterization of large-sized cerium-doped Lu1.6Y0.4SiO5[J]. J Inorg Mater, 2005, 20(6): 1301-1305. doi: 10.3321/j.issn:1000-324X.2005.06.004 |
[7] | Mao R H, Wu C, Dai L E, et al. Crystal growth and scintillation properties of LSO and LYSO crystals[J]. J Cryst Growth, 2013, 368: 97-100. doi: 10.1016/j.jcrysgro.2013.01.038 |
[8] | Phunpueok A, Chewpraditkul W, Limsuwan P, et al. Light output and energy resolution of Lu0.7Y0.3AlO3: Ce and Lu1.95Y0.05SiO5: Ce scintillators[J]. Proced Eng, 2012, 32: 564-570. doi: 10.1016/j.proeng.2012.01.1309 |
[9] | Ferri A, Gola A, Serra N, et al. Performance of FBK high-density SiPM technology coupled to Ce: LYSO and Ce: GAGG for TOF-PET[J]. Phys Med Biol, 2014, 59(4): 869-880. doi: 10.1088/0031-9155/59/4/869 |
[10] | Calva-Coraza E, Alva-Sánchez H, Murrieta-Rodríguez T, et al. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays[J]. Phys Med, 2017, 42: 19. |
[11] | Alva-Sanchez H, Murrieta T, Moreno-Barbosa E, et al. A small-animal PET system based on LYSO crystal arrays, PS-PMTs and a PCI DAQ board[J]. IEEE Trans Nucl Sci, 2010, 57(1): 85-93. doi: 10.1109/TNS.2009.2038052 |
[12] | Akatsu M, Enari Y, Hayasaka K, et al. MCP-PMT timing property for single photons[J]. Nucl Instrum Meth Phys Res, 2004, 528(3): 763-775. doi: 10.1016/j.nima.2004.04.207 |
[13] | https://www.hamamatsu.com/jp/en/product/optical-sensors/mppc/index.html. |
[14] | Tamulaitis G, Auffray E, Gola A, et al. Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals[J]. J Phys Chem Solids, 2020, 139: 109356. doi: 10.1016/j.jpcs.2020.109356 |
[15] | Zhu Y, Qian S, Wang Z G, et al. Scintillation properties of GAGG: Ce ceramic and single crystal[J]. Opt Mater, 2020, 105: 109964. doi: 10.1016/j.optmat.2020.109964 |
[16] | Deprez K, Van Holen R, Vandenberghe S. A high resolution SPECT detector based on thin continuous LYSO[J]. Phys Med Biol, 2014, 59(1): 153-171. doi: 10.1088/0031-9155/59/1/153 |
[17] | Atanov N, Baranov V, Colao F, et al. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment[J]. Nucl Instrum Methods Phys Res Sec A: Accel, Spectrom, Detect Assoc Equip, 2016, 824: 684-685. doi: 10.1016/j.nima.2015.09.051 |
[18] | Wanarak C, Chewpraditkul W, Phunpueok A, et al. Luminescence and scintillation properties of Ce-doped LYSO and YSO crystals[J]. Adv Mater Res, 2011, 199-200: 1796-1803. doi: 10.4028/www.scientific.net/AMR.199-200.1796 |
[19] | 袁鞠敏. 闪烁体发光衰减时间与光产额测试系统研制[D]. 济南: 山东大学, 2020. Yuan J M. Development of measurement system for scintillator decay time andlight yield[D]. Ji'nan: Shandong University, 2020. |
[20] | Martins A F, Carreira J F C, Rodrigues J, et al. Spectroscopic analysis of LYSO: Ce crystals[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2017, 172: 163-167. doi: 10.1016/j.saa.2016.04.019 |
[21] | Iwanowska J, Swiderski L, Szczesniak L, et al. Performance of cerium-doped Gd3Al2Ga3O12(GAGG: Ce) scintillator in gamma-ray spectrometry[J]. Nucl Instrum Methods Phys Res Sec A: Accel, Spectrom, Detect Assoc Equip, 2013, 712: 34-40. doi: 10.1016/j.nima.2013.01.064 |
[22] | 冯大建, 丁雨憧, 刘军, 等. Ce: GAGG闪烁晶体生长与性能研究[J]. 压电与声光, 2016, 38(3): 430-432. Feng D J, Ding Y L, Liu J, et al. Study on the growth and scintillation properties of Ce: GAGG crystal[J]. Piezoelect Acoustoopt, 2016, 38(3): 430-432. |
[23] | Tong Y, Yan Z W, Zeng H D, et al. Enhanced blue emission of SnO2 doped phosphate glasses by Gd2O3 co-doping[J]. J Lumin, 2014, 145: 438-442. doi: 10.1016/j.jlumin.2013.08.028 |
[24] | 尹士玉, 陈鹏宇, 马丽双, 等. SiPM低压电源模块性能研究[J]. 核技术, 2019, 42(9): 090403. Yin S Y, Chen P Y, Ma L S, et al. Study of the low voltage power module for SiPM[J]. Nucl Technol, 2019, 42(9): 090403. |
[25] | 董春辉, 马敏, 周荣, 等. SiPM耦合LYSO晶体探测器的能量分辨和时间分辨[J]. 核电子学与探测技术, 2017, 37(1): 1-3, 19. doi: 10.3969/j.issn.0258-0934.2017.01.001 Dong C H, Ma M, Zhou R, et al. Energy resolution and time resolution of SiPM coupled LYSO crystal detector[J]. Nucl Electron Detect Technol, 2017, 37(1): 1-3, 19. doi: 10.3969/j.issn.0258-0934.2017.01.001 |
[26] | Kotera K, Choi W, Takeshita T. SiPM response functions representing wide range including linear behavior after saturation[Z]. arXiv: 1510.01102, 2016. |
[27] | Eigen G, Lee G R. Light yield and uniformity measurements of different scintillator tiles with silicon photomultipliers[J]. J Instrum, 2020, 15(6): C06059. doi: 10.1088/1748-0221/15/06/C06059 |
[28] | Limkitjaroenporn P, Sangwaranatee N, Chaiphaksa W, et al. Comparative studies of the light yield non-proportionality and energy resolution of CsI(Tl), LYSO and BGO scintillation crystals[J]. Mater Sci Forum, 2016, 872: 266-270. doi: 10.4028/www.scientific.net/MSF.872.266 |
[29] | http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/R6427_R7056_TPMH1187E05.pdf. |
[30] | http://lmu.web.psi.ch/docu/manuals/bulk_manuals/PMTs/xp2020.pdf. |
[31] | Pan T, Einstein S A, Kappadath S C, et al. Performance evaluation of the 5-Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2-2012 Standard[J]. Med Phys, 2019, 46(7): 3025-3033. doi: 10.1002/mp.13576 |
[32] | https://www.mouser.cn/datasheet/2/308/MICROJ-SERIES-D-1811589.pdf. |
Overview: Inorganic scintillators have a history of more than sixty years of development in our country. During this period, many scintillators have been successfully developed and put on the market. They have excellent scintillation properties such as high density and high transmittance, as well as stable physical and chemical properties. Coupled with photodetectors, they become one of the core detectors in high-energy physics and nuclear physics experiments. At present, the demand for the physical characteristics of the scintillators has been transformed into high light yield, excellent energy resolution, and fast decay time. Some large-scale scientific projects and new medical imaging equipment, such as the development of large-scale collider experimental detectors, space load calorimeters and TOF-PET require a large number of high-performance scintillators. For this reason, it is urgent to develop and design a complete and convenient scintillator performance test program.
With the development of the photoelectric field, a new type of fast photodetector with fast time response, strong anti-interference ability, small size and light weight has been developed. It is suitable for the detection of fast and extremely weak signals, and its time resolution can reach on the order of tens of picoseconds. The production of new fast photodetectors has also made the scintillator performance test enter a new stage, and the test accuracy will be significantly improved. As a result, an inorganic scintillator performance test plan for a new type of inorganic scintillator and a fast photodetector came into being.
LYSO: Ce scintillator has attracted widespread attention due to its high light yield (25000 ph/MeV) and fast luminescence decay time (40 ns). The single crystal GAGG: Ce scintillator has a light yield of 30000 ph/MeV, and has two decay components: fast and slow. According to the difference of the decay time of the output pulse waveform, it is expected that the PSD method can be used to realize particle discrimination.
The outstanding fluorescence performance advantages of LYSO: Ce scintillator and GAGG: Ce scintillator have set off a research boom. The light output of the LYSO: Ce scintillator is 27029 ph/MeV, the decay time is 40 ns, the energy resolution is 7.9%@662 keV, and the coincidence time resolution can reach 94.3 ps, which were measured by the inorganic scintillator performance test plan. At the same time, the light outputs of ceramic and single crystal GAGG: Ce are 59316 ph/MeV and 31405 ph/MeV, respectively, the energy resolution is 5.4%@662 keV and 7.1%@662 keV, and the decay time of ceramic GAGG: Ce is 182.9 ns. The decay time components of single crystal GAGG: Ce are 50.1 ns and 321.5 ns, respectively.
The schematic of scintillator emission spectrum measurement
Emission spectrum of scintillators. (a) LYSO: Ce; (b) GAGG: Ce
The schematic of scintillator energy spectrum measurement
Energy linearity when LYSO: Ce is coupled with different detectors
Energy linearity when LYSO: Ce is coupled with the SiPM with 50 μm microcells
The energy resolution of LYSO: Ce. (a) Before correction; (b) After correction
The schematic of scintillator time characteristic measurement
The afterglow decay curve of GAGG: Ce scintillator
The average pulse waveform of LYSO: Ce and single crystal GAGG: Ce
The coincidence time resolution of LYSO: Ce scintillator