Liu Y X, Jiang P Q, Wang P H. A tunable nanosecond pulse mode-locking fiber laser[J]. Opto-Electron Eng, 2021, 48(9): 210195. doi: 10.12086/oee.2021.210195
Citation: Liu Y X, Jiang P Q, Wang P H. A tunable nanosecond pulse mode-locking fiber laser[J]. Opto-Electron Eng, 2021, 48(9): 210195. doi: 10.12086/oee.2021.210195

A tunable nanosecond pulse mode-locking fiber laser

    Fund Project: the National Key R&D Program of China (2016YFF0102003, 2016YFF0102000)
More Information
  • A tunable nanosecond pulse fiber laser is demonstrated in the paper. The laser adopts the passive mode locking mechanism of the nonlinear amplifying loop mirror and a manually adjustable filter and fiber grating are added to achieve single-wavelength spectral output. The passive mode locked erbium-doped fiber laser with 430 m cavity length generates the nanosecond rectangle pulse at 465 kHz repetition rate. The tunable passive mode locked fiber laser incorporates a broad bandwidth mode locking device and a tunable filter in the cavity. The broad bandwidth mode locker is the key device for the tunable pulse output, which is based on a reflective nonlinear amplifying loop mirror. The result shows that the pulse duration and the single-pulse energy are 10.58 ns and 70.28 nJ respectively when the laser works at 1560 nm and has 400 mW pump power. The tunable range is from 1523.4 nm to 1575 nm.
  • 加载中
  • [1] Sun Z P, Popa D, Hasan T, et al. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser[J]. Nano Res, 2010, 3(9): 653-660. doi: 10.1007/s12274-010-0026-4

    CrossRef Google Scholar

    [2] Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nat Nanotechnol, 2008, 3(12): 738-742. doi: 10.1038/nnano.2008.312

    CrossRef Google Scholar

    [3] Walbaum T, Fallnich C. Multimode interference filter for tuning of a mode-locked all-fiber erbium laser[J]. Opt Lett, 2011, 36(13): 2459-2461. doi: 10.1364/OL.36.002459

    CrossRef Google Scholar

    [4] Zhang L, Hu J M, Wang J H, et al. Tunable all-fiber dissipative-soliton laser with a multimode interference filter[J]. Opt Lett, 2012, 37(18): 3828-3830. doi: 10.1364/OL.37.003828

    CrossRef Google Scholar

    [5] Dherbecourt J B, Denoeud A, Melkonian J M, et al. Picosecond tunable mode locking of a Cr2+: ZnSe laser with a nonlinear mirror[J]. Opt Lett, 2011, 36(5): 751-753. doi: 10.1364/OL.36.000751

    CrossRef Google Scholar

    [6] Ouyang C, Shum P, Wang H H, et al. Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter[J]. IEEE J Quantum Electron, 2011, 47(2): 198-203. doi: 10.1109/JQE.2010.2071374

    CrossRef Google Scholar

    [7] Zhang Z X, Xu Z W, Zhang L. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter[J]. Opt Express, 2012, 20(24): 26736-26742. doi: 10.1364/OE.20.026736

    CrossRef Google Scholar

    [8] He X Y, Liu Z B, Wang D N. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating[J]. Opt Lett, 2012, 37(12): 2394-2396. doi: 10.1364/OL.37.002394

    CrossRef Google Scholar

    [9] Wang J, Yan Y X, Zhang A P, et al. Tunable scalar solitons from a polarization-maintaining mode-locked fiber laser using carbon nanotube and chirped fiber Bragg grating[J]. Opt Express, 2016, 24(20): 22387-22394. doi: 10.1364/OE.24.022387

    CrossRef Google Scholar

    [10] Wang J, Yao M, Hu C Z, et al. Optofluidic tunable mode-locked fiber laser using a long-period grating integrated microfluidic chip[J]. Opt Lett, 2017, 42(6): 1117-1120. doi: 10.1364/OL.42.001117

    CrossRef Google Scholar

    [11] Yao H, Shi F, Huang Y P, et al. Mode-locked Yb-doped fiber laser based on mode coupler[J]. Opto-Electron Eng, 2020, 47(11): 200040.

    Google Scholar

    [12] Zou F, Wang Z K, Wang Z W, et al. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity[J]. Opt Laser Technol, 2017, 92: 133-137. doi: 10.1016/j.optlastec.2016.12.012

    CrossRef Google Scholar

    [13] Luo J L, Ge Y Q, Tang D Y, et al. Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers[J]. IEEE Photonics J, 2014, 6(1): 1500608.

    Google Scholar

    [14] Li X H, Wang Y S, Zhao W, et al. All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter[J]. Laser Phys, 2011, 21(5): 940-944. doi: 10.1134/S1054660X11090143

    CrossRef Google Scholar

    [15] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Appl Phys Lett, 2010, 96(11): 111112. doi: 10.1063/1.3367743

    CrossRef Google Scholar

    [16] Shang C, Zhang Y B, Qin H Y, et al. Review on wavelength-tunable pulsed fiber lasers based on 2D materials[J]. Opt Laser Technol, 2020, 131: 106375. doi: 10.1016/j.optlastec.2020.106375

    CrossRef Google Scholar

    [17] Meng Y C, Salhi M, Niang A, et al. Mode-locked Er: Yb-doped double-clad fiber laser with 75-nm tuning range[J]. Opt Lett, 2015, 40(7): 1153-1156. doi: 10.1364/OL.40.001153

    CrossRef Google Scholar

    [18] Nyushkov B, Kobtsev S, Antropov A, et al. Femtosecond 78-nm tunable Er: Fibre laser based on drop-shaped resonator topology[J]. J Lightw Technol, 2019, 37(4): 1359-1363. doi: 10.1109/JLT.2019.2893291

    CrossRef Google Scholar

    [19] Xia H D, Li H P, Lan C Y, et al. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber[J]. Opt Express, 2014, 22(14): 17341-17348. doi: 10.1364/OE.22.017341

    CrossRef Google Scholar

    [20] Zhang Z X, Mou C B, Yan Z J, et al. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating[J]. Opt Express, 2013, 21(23): 28297-28303. doi: 10.1364/OE.21.028297

    CrossRef Google Scholar

    [21] Zhang Z X, Öktem B, Ilday F Ö. All-fiber-integrated soliton-similariton laser with in-line fiber filter[J]. Opt Lett, 2012, 37(17): 3489-3491. doi: 10.1364/OL.37.003489

    CrossRef Google Scholar

    [22] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nat Photonics, 2012, 6(2): 84-92. doi: 10.1038/nphoton.2011.345

    CrossRef Google Scholar

    [23] Li X H, Liu X M, Hu X H, et al. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime[J]. Opt Lett, 2010, 35(19): 3249-3251. doi: 10.1364/OL.35.003249

    CrossRef Google Scholar

    [24] Wang P H, Tang Y B, Peng H L, et al. A long cavity passive mode-locking fibre laser with the reflective non-linear optical loop mirror[J]. J Mod Opt, 2017, 64(2): 122-126. doi: 10.1080/09500340.2016.1210686

    CrossRef Google Scholar

    [25] Semaan G, Braham F B, Fourmont J, et al. 10 μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er: Yb mode-locked fiber laser[J]. Opt Lett, 2016, 41(20): 4767-4770. doi: 10.1364/OL.41.004767

    CrossRef Google Scholar

    [26] Cheng Z C, Li H H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]. Opt Express, 2015, 23(5): 5972-5981. doi: 10.1364/OE.23.005972

    CrossRef Google Scholar

    [27] Du Y Q, Shu X W. Pulse dynamics in all-normal dispersion ultrafast fiber lasers[J]. J Opt Soc Am B, 2017, 34(3): 553-558. doi: 10.1364/JOSAB.34.000553

    CrossRef Google Scholar

    [28] Zheng X W, Luo Z C, Liu H, et al. High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser[J]. Appl Phys Express, 2014, 7(4): 042701. doi: 10.7567/APEX.7.042701

    CrossRef Google Scholar

    [29] Fukuchi Y, Hirata K, Ikeoka H. Extra-broadband wavelength-tunable actively mode-locked short-cavity fiber ring laser using a bismuth-based highly nonlinear erbium-doped fiber[J]. Opt Commun, 2014, 324: 141-146. doi: 10.1016/j.optcom.2014.03.050

    CrossRef Google Scholar

  • Overview: The tunable passive mode locked fiber laser has attracted a lot of interest because of its wide field applications, such as biomedical research and fiber optical sensing. The tunable passive mode locked fiber laser incorporate the passive mode locking technique and wavelength-selective devices in the cavity. Recently, the passive mode locked fiber lasers at 1.5 μm with a tuning range over 70 nm are demonstrated, but the pulse energy is low. The long cavity mode locked fiber laser can produce the pulse train with high pulse energy. A mode locked fiber laser with 1536 m cavity length and 10 μJ pulse energy was reported.

    In this paper, we present a tunable long-cavity passive mode-locked fiber laser based on reflective nonlinear amplifying loop mirror (NALM). The reflective NALM serves as the mode locker, which is made up of a 50: 50 optical coupler (the measured ratio is 48.6: 51.4), an erbium-doped fiber amplifier, 404 m single mode fiber and two polarization controllers. The net dispersion in the cavity is -8.87 ps2. A manual tunable bandpass filter (TBF) is inserted into the cavity. The tunable range of the TBF is from 1510 nm to1580 nm.

    At first, the laser at 1560 nm is investigated in detail. The laser operates in DSR region and generates rectangular pulses with 465 kHz repetition rate. Figure shows the pulse evolution at different pump powers. When the pump power increases from 100 mW to 400 mW at 50 mW interval, the pulse durations are 3.88 ns, 4.64 ns, 6.36 ns, 7.72 ns, 8.76 ns, 9.34 ns and 10.58 ns, respectively. The single-pulse energy is 70.28 nJ when the pump power is 400 mW. The tuning characteristics of the passive mode locked fiber laser is investigated by adjusting TBF's transmission wavelength. When the pump power is 400 mW, the laser can keep stable mode-locking status at the range from 1523.4 nm to 1575 nm. The threshold pump power has a little fluctuation around 80 mW. During the whole tuning range, the SNR of the laser is ~50 dB, which proves that the laser keeps stable mode-locking status during the tuning course. The pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. The tunable nanosecond pulse fiber laser has a lot of potential applications in many fields.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint