Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
Citation: Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

Recent research progress in optical super-resolution planar meta-lenses

    Fund Project: National Natural Science Foundation of China (61927818, 61575031) and National Program on Key Basic Research Project (2013CBA01700)
More Information
  • Breaking through the theoretical resolution limit on the optical mechanism and realizing super-resolution optical point-spread-function is important in achieving super-resolution focusing and imaging, which have great potential applications in laser processing, super-resolution microscopy, and telescope systems. In recent years, with the development of optical metasurfaces, it is capable to achieve independent control of the amplitude, phase, and polarization of the optical fields on the sub-wavelength scale, which in turn provides a more flexible means for the development of a new type of super-resolution planar super-lens. This article reviews the recent research progress of super-resolution planar meta-lenses based on the optical metasurfaces and related testing techniques. It also discusses the problems faced in this field and future research priorities and directions.
  • 加载中
  • [1] Lipson S G, Lipson H, Tannhauser D S. Optical Physics[M]. New York: Cambridge University Press, 1995.

    Google Scholar

    [2] 干福熹, 王阳. 突破光学衍射极限, 发展纳米光学和光子学[J]. 光学学报, 2011, 31(9): 0900104.

    Google Scholar

    Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the nano-optics and photonics[J]. Acta Opt Sin, 2011, 31(9): 0900104.

    Google Scholar

    [3] 李帅, 匡翠方, 丁志华, 等. 受激发射损耗显微术(STED)的机理及进展研究[J]. 激光生物学报, 2013, 22(2): 103–113. doi: 10.3969/j.issn.1007-7146.2013.02.002

    CrossRef Google Scholar

    Li S, Kuang C F, Ding Z H, et al. A review on concept and development of stimulated emission depletion microscopy (STED)[J]. Acta Laser Biol Sin, 2013, 22(2): 103–113. doi: 10.3969/j.issn.1007-7146.2013.02.002

    CrossRef Google Scholar

    [4] Dan D, Lei M, Yao B L, et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Sci Rep, 2013, 3(1): 1116. doi: 10.1038/srep01116

    CrossRef Google Scholar

    [5] Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    Google Scholar

    [6] Pan L, Park Y, Xiong Y, et al. Maskless plasmonic lithography at 22 nm resolution[J]. Sci Rep, 2011, 1(1): 175. doi: 10.1038/srep00175

    CrossRef Google Scholar

    [7] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435–441. doi: 10.1038/nmat2141

    CrossRef Google Scholar

    [8] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(9): 4932–4936. doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [9] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Lett, 2013, 13(1): 159–163. doi: 10.1021/nl303841n

    CrossRef Google Scholar

    [10] Saxena S, Chaudhary R P, Singh A, et al. Plasmonic micro lens for extraordinary transmission of broadband light[J]. Sci Rep, 2014, 4(1): 5586.

    Google Scholar

    [11] Dong J J, Liu J, Hu B, et al. Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings[J]. Appl Phys Lett, 2014, 104(1): 011115. doi: 10.1063/1.4861595

    CrossRef Google Scholar

    [12] Huang F M, Chen Y F, de Abajo F J G, et al. Optical super-resolution through super-oscillations[J]. J Opt A Pure Appl Opt, 2007, 9(9): S285–S288. doi: 10.1088/1464-4258/9/9/S01

    CrossRef Google Scholar

    [13] Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Lett, 2009, 9(3): 1249–1254. doi: 10.1021/nl9002014

    CrossRef Google Scholar

    [14] Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163–22171. doi: 10.1364/OE.22.022163

    CrossRef Google Scholar

    [15] He Q, Sun S L, Xiao S Y, et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Adv Opt Mater, 2018, 6(19): 1800415. doi: 10.1002/adom.201800415

    CrossRef Google Scholar

    [16] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Adv Opt Mater, 2018, 6(13): 1800104. doi: 10.1002/adom.201800104

    CrossRef Google Scholar

    [17] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Adv Opt Mater, 2018, 6(7): 1701201. doi: 10.1002/adom.201701201

    CrossRef Google Scholar

    [18] Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics[J]. Light Sci Appl, 2018, 7: 58. doi: 10.1038/s41377-018-0058-1

    CrossRef Google Scholar

    [19] Su V C, Cheng H C, Sun G, et al. Advances in optical metasurfaces: fabrication and applications [Invited][J]. Opt Express, 2018, 26(10): 13148–13182. doi: 10.1364/OE.26.013148

    CrossRef Google Scholar

    [20] Pu M B, Guo Y H, Ma X L, et al. Methodologies for on-demand dispersion engineering of waves in metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1801376. doi: 10.1002/adom.201801376

    CrossRef Google Scholar

    [21] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [22] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nat Nanotechnol, 2016, 11(1): 23–36. doi: 10.1038/nnano.2015.304

    CrossRef Google Scholar

    [23] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [24] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [25] Arbabi E, Arbabi M, Kamali S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6): 628–633. doi: 10.1364/OPTICA.3.000628

    CrossRef Google Scholar

    [26] Jia D L, Tian Y, Ma W, et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface[J]. Opt Lett, 2017, 42(21): 4494–4497. doi: 10.1364/OL.42.004494

    CrossRef Google Scholar

    [27] Jiang X, Chen H, Li Z Y, et al. All-dielectric metalens for terahertz wave imaging[J]. Opt Express, 2018, 26(11): 14132–14142. doi: 10.1364/OE.26.014132

    CrossRef Google Scholar

    [28] Chen H, Wu Z X, Li Z Y, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825. doi: 10.1364/OE.26.029817

    CrossRef Google Scholar

    [29] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755–3780. doi: 10.1515/nanoph-2020-0220

    CrossRef Google Scholar

    [30] Dong Y, Xu Z J, Li N X, et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform[J]. Nanophotonics, 2020, 9(1): 149–157.

    Google Scholar

    [31] Kruk S, Hopkins B, Kravchenko I I, et al. Invited Article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 2016, 1(3): 030801. doi: 10.1063/1.4949007

    CrossRef Google Scholar

    [32] Chen C, Gao S L, Xiao X J, et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Adv Photonics Res, 2021, 2(3): 2000154. doi: 10.1002/adpr.202000154

    CrossRef Google Scholar

    [33] Zhang Y B, Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electron Adv, 2020, 3(11): 200002. doi: 10.29026/oea.2020.200002

    CrossRef Google Scholar

    [34] Grosjean T, Courjon D. Polarization filtering induced by imaging systems: effect on image structure[J]. Phys Rev E, 2003, 67(4): 046611. doi: 10.1103/PhysRevE.67.046611

    CrossRef Google Scholar

    [35] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. J Opt, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008

    CrossRef Google Scholar

    [36] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件[J]. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205

    CrossRef Google Scholar

    Chen G, Wen Z Q, Wu Z X. Optical super-oscillation and super-oscillatory optical devices[J]. Acta Phys Sin, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205

    CrossRef Google Scholar

    [37] Berry M, Zheludev N, Aharonov Y, et al. Roadmap on superoscillations[J]. J Opt, 2019, 21(5): 053002. doi: 10.1088/2040-8986/ab0191

    CrossRef Google Scholar

    [38] Chen G, Wen Z Q, Qiu C W. Superoscillation: from physics to optical applications[J]. Light Sci Appl, 2019, 8: 56. doi: 10.1038/s41377-019-0163-9

    CrossRef Google Scholar

    [39] Rogers K S, Rogers E T F. Realising superoscillations: a review of mathematical tools and their application[J]. J Opt, 2020, 2(4): 042004.

    Google Scholar

    [40] Zheludev N I, Yuan G H. Optical superoscillation technologies beyond the diffraction limit[J]. Nat Rev Phys, 2022, 4(1): 16–32. doi: 10.1038/s42254-021-00382-7

    CrossRef Google Scholar

    [41] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031.

    Google Scholar

    [42] Yuan G H, Rogers E T F, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light Sci Appl, 2017, 6(9): e17036. doi: 10.1038/lsa.2017.36

    CrossRef Google Scholar

    [43] Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556–567. doi: 10.1109/TAP.2007.891552

    CrossRef Google Scholar

    [44] Tang D L, Chen L, Liu J J. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing[J]. Opt Express, 2019, 27(9): 12308–12316. doi: 10.1364/OE.27.012308

    CrossRef Google Scholar

    [45] Chen L, Liu J, Zhang X H, et al. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-diffraction focusing[J]. Opt Letters, 2020, 45(20): 5772–5775. doi: 10.1364/OL.404764

    CrossRef Google Scholar

    [46] Lu X J, Guo Y H, Pu M B, et al. Switchable polarization-multiplexed super-oscillatory metasurfaces for achromatic sub-diffraction focusing[J]. Opt Express, 2020, 28(26): 39024–39037. doi: 10.1364/OE.413078

    CrossRef Google Scholar

    [47] Dai X M, Dong F L, Zhang K, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi: 10.1021/acsphotonics.1c00411

    CrossRef Google Scholar

    [48] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220–226. doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [49] Zhao F, Li Z P, Dai X M, et al. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens[J]. Adv Opt Mater, 2020, 8(21): 2000842. doi: 10.1002/adom.202000842

    CrossRef Google Scholar

    [50] Zhao F, Jiang X, Li S, et al. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface[J]. J Phys D Appl Phys, 2019, 52(50): 505110. doi: 10.1088/1361-6463/ab46c4

    CrossRef Google Scholar

    [51] Lu X J, Guo Y H, Pu M B, et al. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible[J]. Opt Express, 2021, 29(4): 5947–5958. doi: 10.1364/OE.417036

    CrossRef Google Scholar

    [52] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle fourier lens[J]. Adv Mater, 2018, 30(23): 1706368. doi: 10.1002/adma.201706368

    CrossRef Google Scholar

    [53] Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles[J]. J Opt Soc Am B, 2016, 33(2): A66–A71. doi: 10.1364/JOSAB.33.000A66

    CrossRef Google Scholar

    [54] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902–4907. doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [55] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat Commun, 2016, 7: 13682. doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [56] Pu M B, Li X, Guo Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Opt Express, 2017, 25(25): 31471–31477. doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

    [57] Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [58] Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Adv Opt Mater, 2020, 8(9): 1901885. doi: 10.1002/adom.201901885

    CrossRef Google Scholar

    [59] Li Z, Wang C T, Wang Y Q, et al. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle[J]. Opt Express, 2021, 29(7): 9991–9999. doi: 10.1364/OE.417884

    CrossRef Google Scholar

    [60] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377–3382. doi: 10.1364/OPEX.12.003377

    CrossRef Google Scholar

    [61] Liu W, Dong D S, Yang H, et al. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference[J]. Opto-Electron Adv, 2020, 3(8): 200022. doi: 10.29026/oea.2020.200022

    CrossRef Google Scholar

    [62] Gupta D N, Kant N, Kim D E, et al. Electron acceleration to GeV energy by a radially polarized laser[J]. Phys Lett A, 2007, 368(5): 402–407. doi: 10.1016/j.physleta.2007.04.030

    CrossRef Google Scholar

    [63] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86–92. doi: 10.1364/OPTICA.5.000086

    CrossRef Google Scholar

    [64] Yu W T, Ji Z H, Dong D S, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser Photonics Rev, 2016, 10(1): 147–152. doi: 10.1002/lpor.201500151

    CrossRef Google Scholar

    [65] Jiang Y S, Li X P, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam[J]. Opt Lett, 2013, 38(16): 2957–2960. doi: 10.1364/OL.38.002957

    CrossRef Google Scholar

    [66] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [67] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859. doi: 10.1038/srep38859

    CrossRef Google Scholar

    [68] Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Sci Rep, 2016, 6: 37776. doi: 10.1038/srep37776

    CrossRef Google Scholar

    [69] Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660.

    Google Scholar

    [70] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697. doi: 10.1038/s41598-017-05060-2

    CrossRef Google Scholar

    [71] Wu Z X, Jin Q J, Zhang S, et al. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave[J]. Opt Express, 2018, 26(7): 7866–7875. doi: 10.1364/OE.26.007866

    CrossRef Google Scholar

    [72] Wu Z X, Zhang Q, Jiang X, et al. Broadband integrated metalens for creating super-oscillation 3D hollow spot by independent control of azimuthally and radially polarized waves[J]. J Phys D Appl Phy, 2019, 52(41): 415103. doi: 10.1088/1361-6463/ab3210

    CrossRef Google Scholar

    [73] Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795

    CrossRef Google Scholar

    [74] Li Y Y, Cao L Y, Wen Z Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110–113. doi: 10.1364/OL.44.000110

    CrossRef Google Scholar

    [75] Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189. doi: 10.1021/acsphotonics.9b01356

    CrossRef Google Scholar

    [76] Zhang Z X, Li Z Y, Lei J, et al. Environmentally robust immersion supercritical lens with an invariable sub-diffraction-limited focal spot[J]. Opt Lett, 2021, 46(10): 2296–2299. doi: 10.1364/OL.425361

    CrossRef Google Scholar

    [77] Hu Y W, Wang S W, Jia J H, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photonics, 2021, 3(4): 045002.

    Google Scholar

    [78] Chen H, Wu Z X, Li Z Y, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825. doi: 10.1364/OE.26.029817

    CrossRef Google Scholar

    [79] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    CrossRef Google Scholar

    [80] Kitamura K, Sakai K, Noda S. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam[J]. Opt Express, 2011, 19(15): 13750–13756. doi: 10.1364/OE.19.013750

    CrossRef Google Scholar

    [81] Yang L X, Xie X S, Wang S C, et al. Minimized spot of annular radially polarized focusing beam[J]. Opt Lett, 2013, 38(8): 1331–1333. doi: 10.1364/OL.38.001331

    CrossRef Google Scholar

    [82] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. New York: Cambridge University Press, 1999.

    Google Scholar

    [83] Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    Google Scholar

    [84] Baumgartl J, Kosmeier S, Mazilu M, et al. Far field subwavelength focusing using optical eigenmodes[J]. Appl Phys Lett, 2011, 98(18): 181109. doi: 10.1063/1.3587636

    CrossRef Google Scholar

    [85] Ecoffey C, Grosjean T. Far-field mapping of the longitudinal magnetic and electric optical fields[J]. Opt Lett, 2013, 38(23): 4974–4977. doi: 10.1364/OL.38.004974

    CrossRef Google Scholar

    [86] Liu T, Yang S M, Jiang Z D. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Opt Express, 2016, 24(15): 16297–16308. doi: 10.1364/OE.24.016297

    CrossRef Google Scholar

    [87] Gao J, Yan S K, Zhou Y, et al. Polarization-conversion microscopy for imaging the vectorial polarization distribution in focused light[J]. Optica, 2021, 8(7): 984–994. doi: 10.1364/OPTICA.422836

    CrossRef Google Scholar

    [88] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432–435. doi: 10.1038/nmat3280

    CrossRef Google Scholar

    [89] Qin F, Huang K, Wu J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2016, 29(8): 1602721.

    Google Scholar

    [90] Matsunaga D, Kozawa Y, Sato S. Super-oscillation by higher-order radially polarized Laguerre-Gaussian beams[C]//Proceedings of 2016 Conference on Lasers and Electro-Optics, 2016.

    Google Scholar

    [91] Wang C T, Tang D L, Wang Y Q, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Sci Rep, 2015, 5: 18485. doi: 10.1038/srep18485

    CrossRef Google Scholar

    [92] Rogers K S, Bourdakos K N, Yuan G H, et al. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Opt Express, 2018, 26(7): 8095–8112. doi: 10.1364/OE.26.008095

    CrossRef Google Scholar

    [93] Karoui A, Moumni T. Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions[J]. J Comput Appl Math, 2009, 233(2): 315–333. doi: 10.1016/j.cam.2009.07.037

    CrossRef Google Scholar

    [94] Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatory metamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016. doi: 10.1103/PhysRevApplied.11.064016

    CrossRef Google Scholar

    [95] Rogers E T F, Quraishe S, Chad J E, et al. New super-oscillatory technology for unlabelled super-resolution cellular imaging with polarisation contrast[J]. Biophys J, 2017, 112(3): 186A.

    Google Scholar

    [96] Rogers E T F, Quraishe S, Rogers K S, et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination[J]. APL Photonics, 2020, 5(6): 066107. doi: 10.1063/1.5144918

    CrossRef Google Scholar

    [97] Le Gratiet A, Dubreuil M, Rivet S, et al. Scanning Mueller polarimetric microscopy[J]. Opt Lett, 2016, 41(18): 4336–4339. doi: 10.1364/OL.41.004336

    CrossRef Google Scholar

    [98] Mehta S B, Shribak M, Oldenbourg R. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity[J]. J Opt, 2013, 15(9): 094007. doi: 10.1088/2040-8978/15/9/094007

    CrossRef Google Scholar

    [99] Li W L, He P, Yuan W Z, et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Nanoscale, 2020, 12(13): 7063–7071. doi: 10.1039/C9NR10697A

    CrossRef Google Scholar

    [100] Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 2019, 364(6442): 771–775. doi: 10.1126/science.aaw7840

    CrossRef Google Scholar

    [101] Yuan G H, Rogers E T F, Zheludev N I. "Plasmonics" in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields[J]. Light Sci Appl, 2019, 8: 2. doi: 10.1038/s41377-018-0112-z

    CrossRef Google Scholar

  • Overview: Due to the optical diffraction limitation, conventional optical systems can hardly achieve a resolution less than 0.5λ/NA, where λ is the wavelength of the light source and NA presents the numerical aperture of the objective. Breaking through the theoretical resolution limit in the optical mechanism and realizing super-resolution optical point-spread-function is important in achieving super-resolution focusing and imaging, which have great potential applications in laser processing, super-resolution microscopy and telescope systems. Many ideas have been provided before to surpass the theoretical resolution limit, such as stimulated emission depletion (STED), single-molecule localization (SML), and structured illumination microscopy (SIM), but most of these will require labeling the samples and thus causes changes of the molecule behaviors. Negative-index super lens, which has been proposed to reconstruct and capture evanescent fields, has not yet been applied as a practical imaging technique because of substantial technological challenges. In recent years, with the development of optical metasurfaces, it is possible to achieve independent control of the amplitude, phase, and polarization of the optical field on the sub-wavelength scale, which in turn provides a more flexible means for the development of a new type of super-resolution planar super-lens. Optical super-oscillation, which has been exploited worldwide recently, is a phenomenon that a band-limited wave to oscillate locally much faster than the highest Fourier component of the signal. In principle, a super-oscillatory lens could produce a focus of any prescribed size, which can be potentially used in super-resolution microscopy, high-resolution laser manufacturing, and telescopes. This article reviews the recent research progress of super-resolution planar metalenses based on optical metasurfaces and related testing techniques. We introduce different methods to produce multiple-wavelength achromatic super-resolution metalenses and corresponding focusing results, as well as the continuous broadband achromatic super-resolution metalenses. Meanwhile, we explain the ways to design vectorial super-resolution meta-lenses, such as by phase and polarization manipulations and show the corresponding results. A new idea using an optical microscope to directly image the focused optical field is elaborated and compared with other existing methods. Finally, we present the typical applications of super-resolution metalenses in some areas such as confocal microscopy, micro/nano fabrication and nanometic displacement detection. The problems faced in this field and future research priorities and directions are also discussed in this review paper.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(10856) PDF downloads(2817) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint