Yu X, Yan J S, Wu Z P, et al. Research progress of solar desalination materials produced by laser micro-nano fabrication[J]. Opto-Electron Eng, 2022, 49(1): 210313. doi: 10.12086/oee.2022.210313
Citation: Yu X, Yan J S, Wu Z P, et al. Research progress of solar desalination materials produced by laser micro-nano fabrication[J]. Opto-Electron Eng, 2022, 49(1): 210313. doi: 10.12086/oee.2022.210313

Research progress of solar desalination materials produced by laser micro-nano fabrication

    Fund Project: National Natural Science Foundation of China (52075557, 51805553), Natural Science Foundation of Hunan Province (2021JJ20067), and Independent Project of State Key Laboratory of High-performance Complex Manufacturing, Central South University (ZZyJKT2019-12)
More Information
  • The seawater desalination technology plays an important role in solving the problem of water shortage. In particular, the research of solar seawater technology has attracted more research and industry attentions. As an advanced and convenient processing method, laser micro/nano-manufacturing technology has made some achievements in the field of preparing seawater desalination materials in recent years. Based on the solar desalination and laser processing technologies as the research background, according to diverse research materials, we summarize the research progress of laser micro/nano-manufacturing technology in the preparation of seawater desalination materials from three different aspects, including carbon-based, metal-based and composite materials. Finally, challenges and prospects of this field are provided.
  • 加载中
  • [1] Xia Y, Kang Y, Wang Z Y, et al. Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges[J]. J Mater Chem A, 2021, 9(11): 6612−6633. doi: 10.1039/D0TA11911C

    CrossRef Google Scholar

    [2] Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Sci Adv, 2016, 2(2): e1500323. doi: 10.1126/sciadv.1500323

    CrossRef Google Scholar

    [3] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nanosci Technol, 2009: 337−346. doi: 10.1038/nature06599

    CrossRef Google Scholar

    [4] Shatat M, Worall M, Riffat S. Opportunities for solar water desalination worldwide: Review[J]. Sust Cit Soc, 2013, 9: 67−80. doi: 10.1016/j.scs.2013.03.004

    CrossRef Google Scholar

    [5] El-Sadek A. Water desalination: An imperative measure for water security in Egypt[J]. Desalination, 2010, 250(3): 876−884. doi: 10.1016/j.desal.2009.09.143

    CrossRef Google Scholar

    [6] Youssef P G, Al-Dadah R K, Mahmoud S M. Comparative analysis of desalination technologies[J]. Energy Proc, 2014, 61: 2604−2607. doi: 10.1016/j.egypro.2014.12.258

    CrossRef Google Scholar

    [7] Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712−717. doi: 10.1126/science.1200488

    CrossRef Google Scholar

    [8] Khawaji A D, Kutubkhanah I K, Wie J M. Advances in seawater desalination technologies[J]. Desalination, 2008, 221(1-3): 47−69. doi: 10.1016/j.desal.2007.01.067

    CrossRef Google Scholar

    [9] Peñate B, García-Rodríguez L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology[J]. Desalination, 2012, 284: 1−8. doi: 10.1016/j.desal.2011.09.010

    CrossRef Google Scholar

    [10] Al-Karaghouli A, Kazmerski L L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes[J]. Renew Sust Energy Rev, 2013, 24: 343−356. doi: 10.1016/j.rser.2012.12.064

    CrossRef Google Scholar

    [11] Miller S, Shemer H, Semiat R. Energy and environmental issues in desalination[J]. Desalination, 2015, 366: 2−8. doi: 10.1016/j.desal.2014.11.034

    CrossRef Google Scholar

    [12] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. J Membrane Sci, 2011, 370(1-2): 1−20. doi: 10.1016/j.memsci.2010.12.036

    CrossRef Google Scholar

    [13] Ahmed F E, Hashaikeh R, Hilal N. Solar powered desalination–Technology, energy and future outlook[J]. Desalination, 2019, 453: 54−76. doi: 10.1016/j.desal.2018.12.002

    CrossRef Google Scholar

    [14] Kumar A, Kumar K, Kaushik N, et al. Renewable energy in India: current status and future potentials[J]. Renew Sust Energy Rev, 2010, 14(8): 2434−2442. doi: 10.1016/j.rser.2010.04.003

    CrossRef Google Scholar

    [15] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294−303. doi: 10.1038/nature11475

    CrossRef Google Scholar

    [16] Lewis N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920. doi: 10.1126/science.aad1920

    CrossRef Google Scholar

    [17] Arunkumar T, Jayaprakash R, Denkenberger D, et al. An experimental study on a hemispherical solar still[J]. Desalination, 2012, 286: 342−348. doi: 10.1016/j.desal.2011.11.047

    CrossRef Google Scholar

    [18] Kabeel A E, Khalil A, Omara Z M, et al. Theoretical and experimental parametric study of modified stepped solar still[J]. Desalination, 2012, 289: 12−20. doi: 10.1016/j.desal.2011.12.023

    CrossRef Google Scholar

    [19] Omara Z M, Kabeel A E, Younes M M. Enhancing the stepped solar still performance using internal reflectors[J]. Desalination, 2013, 314: 67−72. doi: 10.1016/j.desal.2013.01.007

    CrossRef Google Scholar

    [20] Sivakumar V, Sundaram E G. Improvement techniques of solar still efficiency: A review[J]. Renew Sust Energy Rev, 2013, 28: 246−264. doi: 10.1016/j.rser.2013.07.037

    CrossRef Google Scholar

    [21] Dumitru G, Lüscher B, Krack M, et al. Laser processing of hardmetals: Physical basics and applications[J]. Int J Refract Met Hard Mater, 2005, 23(4-6): 278−286. doi: 10.1016/j.ijrmhm.2005.04.020

    CrossRef Google Scholar

    [22] Naeem M. Laser processing of reflective materials: a new technology managing reflection effects[J]. Laser Techn J, 2013, 10(1): 18−20. doi: 10.1002/latj.201390001

    CrossRef Google Scholar

    [23] Phillips K C, Gandhi H H, Mazur E, et al. Ultrafast laser processing of materials: a review[J]. Adv Opt Photon, 2015, 7(4): 684−712. doi: 10.1364/AOP.7.000684

    CrossRef Google Scholar

    [24] Zhang C H, Cao M Y, Ma H Y, et al. Morphology‐control strategy of the superhydrophobic Poly (Methyl Methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Adv Funct Mater, 2017, 27(43): 1702020. doi: 10.1002/adfm.201702020

    CrossRef Google Scholar

    [25] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002. doi: 10.3788/CJL201946.0902002

    CrossRef Google Scholar

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chin J Lasers, 2019, 46(9): 0902002. doi: 10.3788/CJL201946.0902002

    CrossRef Google Scholar

    [26] 王子涵, 王宝续, 釜野勝, 等. 基于激光干涉烧蚀的硅表面微纳结构制备研究[J]. 激光与光电子学进展, 2019, 56(16): 163201. doi: 10.3788/LOP56.163201

    CrossRef Google Scholar

    Wang Z H, Wang B X, Fu Y S, et al. Fabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser Optoelectron Prog, 2019, 56(16): 163201. doi: 10.3788/LOP56.163201

    CrossRef Google Scholar

    [27] Allmen M V, Blatter A. Laser-Beam Interactions with Materials: Physical Principles and Applications[M]. 2nd ed. Berlin: Springer Science & Business Media, 2013.

    Google Scholar

    [28] Liao Y L, Ye C, Cheng G J. A review: Warm laser shock peening and related laser processing technique[J]. Opt Laser Technol, 2016, 78: 15−24. doi: 10.1016/j.optlastec.2015.09.014

    CrossRef Google Scholar

    [29] Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light Sci Appl, 2016, 5(8): e16133−e16133. doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [30] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser Photonics Rev, 2020, 14(8): 1900407. doi: 10.1002/lpor.201900407

    CrossRef Google Scholar

    [31] Hecht J. A short history of laser development[J]. Appl Opt, 2010, 49(25): F99−F122. doi: 10.1364/AO.49.000F99

    CrossRef Google Scholar

    [32] Yiannakou C, Simitzi C, Manousaki A, et al. Cell patterning via laser micro/nano structured silicon surfaces[J]. Biofabrication, 2017, 9(2): 025024. doi: 10.1088/1758-5090/aa71c6

    CrossRef Google Scholar

    [33] Aizawa T, Inohara T, Wasa K. Femtosecond Laser Micro-/nano-texturing of stainless steels for surface property control[J]. Micromachines (Basel), 2019, 10(8): 512. doi: 10.3390/mi10080512

    CrossRef Google Scholar

    [34] Kwon M H, Shin H S, Chu C N. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition[J]. Appl Surf Sci, 2014, 288: 222−228. doi: 10.1016/j.apsusc.2013.10.011

    CrossRef Google Scholar

    [35] Chitnis G, Ding Z W, Chang C L, et al. Laser-treated hydrophobic paper: an inexpensive microfluidic platform[J]. Lab Chip, 2011, 11(6): 1161−1165. doi: 10.1039/c0lc00512f

    CrossRef Google Scholar

    [36] Farshchian B, Gatabi J R, Bernick S M, et al. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation[J]. Appl Surf Sci, 2017, 396: 359−365. doi: 10.1016/j.apsusc.2016.10.153

    CrossRef Google Scholar

    [37] Das R, Arunachalam S, Ahmad Z, et al. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination[J]. J Membr Sci, 2019, 588: 117185. doi: 10.1016/j.memsci.2019.117185

    CrossRef Google Scholar

    [38] Mason A, Mohammadighaleni M, Nejati S. Fabrication of composite membranes for solar-thermal desalination[J]. 2020, 4: 1–6.

    Google Scholar

    [39] Wang Y L, Li G J, Chan K C. Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation[J]. Sol Energy Mater Sol Cells, 2020, 218: 110693. doi: 10.1016/j.solmat.2020.110693

    CrossRef Google Scholar

    [40] Cao X W, Chen Q D, Fan H, et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials, 2018, 8(5): 287. doi: 10.3390/nano8050287

    CrossRef Google Scholar

    [41] Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing[J]. Laser Photonics Rev, 2010, 4(1): 123−143. doi: 10.1002/lpor.200810057

    CrossRef Google Scholar

    [42] Ullah I, Rasul M G. Recent developments in solar thermal desalination technologies: a review[J]. Energies, 2019, 12(1): 119. doi: 10.3390/en12010119

    CrossRef Google Scholar

    [43] Sharon H, Reddy K S. A review of solar energy driven desalination technologies[J]. Renew Sust Energy Rev, 2015, 41: 1080−1118. doi: 10.1016/j.rser.2014.09.002

    CrossRef Google Scholar

    [44] Zhang P P, Liao Q H, Yao H Z, et al. Direct solar steam generation system for clean water production[J]. Energy Stor Mater, 2019, 18: 429−446. doi: 10.1016/j.ensm.2018.10.006

    CrossRef Google Scholar

    [45] Dwivedi V K, Tiwari G N. Experimental validation of thermal model of a double slope active solar still under natural circulation mode[J]. Desalination, 2010, 250(1): 49−55. doi: 10.1016/j.desal.2009.06.060

    CrossRef Google Scholar

    [46] Mahdi J T, Smith B E, Sharif A O. An experimental wick-type solar still system: design and construction[J]. Desalination, 2011, 267(2-3): 233−238. doi: 10.1016/j.desal.2010.09.032

    CrossRef Google Scholar

    [47] Hou W B, Cronin S B. A review of surface plasmon resonance‐enhanced photocatalysis[J]. Adv Funct Mater, 2013, 23(13): 1612−1619. doi: 10.1002/adfm.201202148

    CrossRef Google Scholar

    [48] Zijlstra P, Paulo P M R, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod[J]. Nat Nanotechnol, 2012, 7(6): 379−382. doi: 10.1038/nnano.2012.51

    CrossRef Google Scholar

    [49] Zhang D Q, Wen M C, Zhang S S, et al. Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation[J]. Appl Catal B:Environ, 2014, 147: 610−616. doi: 10.1016/j.apcatb.2013.09.042

    CrossRef Google Scholar

    [50] Ishii S, Sugavaneshwar R P, Chen K, et al. Solar water heating and vaporization with silicon nanoparticles at mie resonances[J]. Opt Mater Expr, 2016, 6(2): 640−648. doi: 10.1364/OME.6.000640

    CrossRef Google Scholar

    [51] Fang Z Y, Zhen Y R, Neumann O, et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle[J]. Nano Lett, 2013, 13(4): 1736−1742. doi: 10.1021/nl4003238

    CrossRef Google Scholar

    [52] Guo A K, Ming X, Fu Y, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Appl Mater Interfaces, 2017, 9(35): 29958−29964. doi: 10.1021/acsami.7b07759

    CrossRef Google Scholar

    [53] Han D X, Meng Z G, Wu D X, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption[J]. Nanoscale Res Lett, 2011, 6(1): 457. doi: 10.1186/1556-276X-6-457

    CrossRef Google Scholar

    [54] Chang C, Yang C, Liu Y M, et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation[J]. ACS Appl Mater Interfaces, 2016, 8(35): 23412−23418. doi: 10.1021/acsami.6b08077

    CrossRef Google Scholar

    [55] Wang X, Liu Q C, Wu S Y, et al. Multilayer polypyrrole nanosheets with self‐organized surface structures for flexible and efficient solar–thermal energy conversion[J]. Adv Mater, 2019, 31(19): 1807716. doi: 10.1002/adma.201807716

    CrossRef Google Scholar

    [56] Ito Y, Tanabe Y, Han J H, et al. Multifunctional porous graphene for high‐efficiency steam generation by heat localization[J]. Adv Mater, 2015, 27(29): 4302−4307. doi: 10.1002/adma.201501832

    CrossRef Google Scholar

    [57] Lin X F, Chen J Y, Yuan Z K, et al. Integrative solar absorbers for highly efficient solar steam generation[J]. J Mater Chem A, 2018, 6(11): 4642−4648. doi: 10.1039/C7TA08256H

    CrossRef Google Scholar

    [58] Li T, Liu H, Zhao X P, et al. Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport[J]. Adv Funct Mater, 2018, 28(16): 1707134. doi: 10.1002/adfm.201707134

    CrossRef Google Scholar

    [59] Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Sci Adv, 2016, 2(4): e1501227. doi: 10.1126/sciadv.1501227

    CrossRef Google Scholar

    [60] Liu H D, Zhang X T, Hong Z X, et al. A bioinspired capillary-driven pump for solar vapor generation[J]. Nano Energy, 2017, 42: 115−121. doi: 10.1016/j.nanoen.2017.10.039

    CrossRef Google Scholar

    [61] Liu Y M, Chen J W, Guo D W, et al. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13645−13652. doi: 10.1021/acsami.5b03435

    CrossRef Google Scholar

    [62] Lou J W, Liu Y, Wang Z Y, et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation[J]. ACS Appl Mater Interfaces, 2016, 8(23): 14628−14636. doi: 10.1021/acsami.6b04606

    CrossRef Google Scholar

    [63] McEnaney K, Weinstein L, Kraemer D, et al. Aerogel-based solar thermal receivers[J]. Nano Energy, 2017, 40: 180−186. doi: 10.1016/j.nanoen.2017.08.006

    CrossRef Google Scholar

    [64] Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nat Photonics, 2016, 10(6): 393−398. doi: 10.1038/nphoton.2016.75

    CrossRef Google Scholar

    [65] Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environ Sci, 2019, 12(3): 841−864. doi: 10.1039/C8EE01146J

    CrossRef Google Scholar

    [66] Yang H, Liu G Y, Zou H B, et al. The design of a solar desalination device control system[J]. J Hangzhou Dianzi Univ, 2014, 34(1): 79−82.

    Google Scholar

    [67] Boriskina S V, Tong J K, Hsu W C, et al. Heat meets light on the nanoscale[J]. Nanophotonics, 2016, 5(1): 134−160. doi: 10.1515/nanoph-2016-0010

    CrossRef Google Scholar

    [68] Yao J D, Zheng Z Q, Yang G W. Alloying-assisted phonon engineering of layered BiInSe3@ nickel foam for efficient solar-enabled water evaporation[J]. Nanoscale, 2017, 9(42): 16396−16403. doi: 10.1039/C7NR04374K

    CrossRef Google Scholar

    [69] Yao J D, Zheng Z Q, Yang G W. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation[J]. Nanoscale, 2018, 10(6): 2876−2886. doi: 10.1039/C7NR09229F

    CrossRef Google Scholar

    [70] Ni G, Li G, Boriskina S V, et al. Steam generation under one sun enabled by a floating structure with thermal concentration[J]. Nat Energy, 2016, 1(9): 16126. doi: 10.1038/nenergy.2016.126

    CrossRef Google Scholar

    [71] Wei T Q, Li X Q, Li J L, et al. Interfacial solar vapor generation[J]. Chin Sci Bull, 2018, 63(14): 1404−1416. doi: 10.1360/N972018-00344

    CrossRef Google Scholar

    [72] Little D J, Ams M, Dekker P, et al. Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure[J]. Opt Expr, 2008, 16(24): 20029−20037. doi: 10.1364/OE.16.020029

    CrossRef Google Scholar

    [73] Sugioka K, Cheng Y. Femtosecond laser processing for optofluidic fabrication[J]. Lab Chip, 2012, 12(19): 3576−3589. doi: 10.1039/c2lc40366h

    CrossRef Google Scholar

    [74] Wu J R, He J, Yin K, et al. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling[J]. Nano Lett, 2021, 21(10): 4209−4216. doi: 10.1021/acs.nanolett.1c00038

    CrossRef Google Scholar

    [75] Wu Z P, Yin K, Wu J R, et al. Femtosecond laser micro-nano fabrication of underwater gas wettable surface[J]. Laser Optoelectr Progr, 2020, 57(11): 111418. doi: 10.3788/LOP57.111418

    CrossRef Google Scholar

    [76] Sugioka K, Xu J, Wu D, et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass[J]. Lab Chip, 2014, 14(18): 3447−3458. doi: 10.1039/C4LC00548A

    CrossRef Google Scholar

    [77] Yin K, Dong X R, Zhang F, et al. Superamphiphobic miniature boat fabricated by laser micromachining[J]. Appl Phys Lett, 2017, 110(12): 121909. doi: 10.1063/1.4979036

    CrossRef Google Scholar

    [78] Wu J R, Yin K, Li M, et al. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure[J]. Nanoscale, 2020, 12(6): 4077−4084. doi: 10.1039/C9NR09902F

    CrossRef Google Scholar

    [79] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser Photonics Rev, 2017, 7(3): 385−407. doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [80] Ye R Q, James D K, Tour J. M. Laser-induced graphene[J]. Acc Chem Res, 2018, 51(7): 1609−1620. doi: 10.1021/acs.accounts.8b00084

    CrossRef Google Scholar

    [81] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Adv Mater, 2019, 31(1): e1803621. doi: 10.1002/adma.201803621

    CrossRef Google Scholar

    [82] Barbhuiya N H, Kumar A, Singh S P. A journey of laser-induced graphene in water treatment[J]. Trans Indian Nat Acad Eng, 2021, 6(2): 159−171. doi: 10.1007/s41403-021-00205-2

    CrossRef Google Scholar

    [83] Wang F C, Wang K D, Zheng B X, et al. Laser-induced graphene: preparation, functionalization and applications[J]. Mater Technol, 2018, 33(5): 340−356. doi: 10.1080/10667857.2018.1447265

    CrossRef Google Scholar

    [84] Tittle C M, Yilman D, Pope M A, et al. Robust superhydrophobic laser-induced graphene for desalination applications[J]. Adv Mater Technol, 2018, 3(2): 1700207. doi: 10.1002/admt.201700207

    CrossRef Google Scholar

    [85] Cheng L, Guo W H, Cao X H, et al. Laser-induced graphene for environmental applications: progress and opportunities[J]. Mater Chem Front, 2021, 5(13): 4874−4891. doi: 10.1039/D1QM00437A

    CrossRef Google Scholar

    [86] Yang H C, Hou J, Chen V, et al. Janus membranes: exploring duality for advanced separation[J]. Angew Chem Int Ed Engl, 2016, 55(43): 13398−13407. doi: 10.1002/anie.201601589

    CrossRef Google Scholar

    [87] Yang Y B, Yang X D, Fu L N, et al. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination[J]. ACS Energy Lett, 2018, 3(5): 1165−1171. doi: 10.1021/acsenergylett.8b00433

    CrossRef Google Scholar

    [88] Li G J, Law W C, Chan K C. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy[J]. Green Chem, 2018, 20(16): 3689−3695. doi: 10.1039/C8GC01347K

    CrossRef Google Scholar

    [89] Akhavan M, Schofield J, Jalili S. Water transport and desalination through double-layer graphyne membranes[J]. Phys Chem Chem Phys, 2018, 20(19): 13607−13615. doi: 10.1039/C8CP02076K

    CrossRef Google Scholar

    [90] Jang H, Choi J, Lee H, et al. Corrugated wood fabricated using laser-induced graphitization for salt-resistant solar steam generation[J]. ACS Appl Mater Interfaces, 2020, 12(27): 30320−30327. doi: 10.1021/acsami.0c05138

    CrossRef Google Scholar

    [91] Ye R Q, Chyan Y, Zhang J B, et al. Laser‐induced graphene formation on wood[J]. Adv Mater, 2017, 29(37): 1702211. doi: 10.1002/adma.201702211

    CrossRef Google Scholar

    [92] Ghafurian M M, Niazmand H, Goharshadi E K, et al. Enhanced solar desalination by delignified wood coated with bimetallic Fe/Pd nanoparticles[J]. Desalination, 2020, 493: 114657. doi: 10.1016/j.desal.2020.114657

    CrossRef Google Scholar

    [93] Fan P X, Wu H, Zhong M L, et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 2016, 8(30): 14617−14624. doi: 10.1039/C6NR03662G

    CrossRef Google Scholar

    [94] Yang S, Yin K, Chu D K, et al. Femtosecond laser structuring of Janus foam: Water spontaneous antigravity unidirectional penetration and pumping[J]. Appl Phys Lett, 2018, 113(20): 203701. doi: 10.1063/1.5061723

    CrossRef Google Scholar

    [95] Kim M, Yang K, Kim Y S, et al. Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination[J]. Carbon, 2020, 164: 349−356. doi: 10.1016/j.carbon.2020.03.059

    CrossRef Google Scholar

    [96] Jiang H Q, Tong L, Liu H D, et al. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter, 2020, 2(6): 1535−1549. doi: 10.1016/j.matt.2020.03.003

    CrossRef Google Scholar

  • Seawater desalination technology plays an important role in solving the problem of water resource shortage. In particular, the research of solar seawater technology has attracted more attentions. As an advanced and convenient fabrication method, laser micro/nano-preparation technology has achieved some research results in the field of fabricating the seawater desalination materials in recent years. Based on the research background of solar desalination and laser processing technology, this paper systematically reviews the research progress of laser micro/nano-processing technology to prepare seawater desalination materials in recent years.

    In the study of solar water desalination, functional materials are made to improve the efficiency of solar water evaporation. In addition, the position of functional materials in water also greatly affects the light utilization rate. A large number of studies have shown that placing functional materials on water surface is the most efficient mode to utilize light. Based on this model, not only do the functional materials require excellent optical properties, which can ensure efficient broadband solar absorption, but also they need good thermal management capabilities in order to reduce heat loss. With the development of research, people have higher requirements on machining accuracy and material functionality. However, traditional micro/nano-processing methods, such as chemical treatment, can not well meet the needs. Therefore, after a long time of exploration, laser micro/nano-machining is favored because of its high power density, high precision, wide application range and other advantages. It gradually becomes an important method in the field of micro/nano-processing, and has been widely used in the study of seawater desalination materials. The researches on laser manufacturing of seawater desalination materials in recent years are divided into three parts: carbon based, metal based and composite based materials.

    The development of seawater desalination technology and laser micro/nano-processing technology are still in its infancy, and there is still a long way to go before they can be applied in industrial production. However, with the deepening of research, a new generation of high-power and high-frequency lasers will develop rapidly. The laser micro/nano-machining technology will provide higher manufacturing efficiency and operation stability at the lower cost, and the mechanism of laser processing technology will be understood more clearly. It is believed that laser micro/nano-processing will gradually promote the practice of solar water desalination and become an important research field in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint