Fan L S, Liu F, Wu G L, et al. Research progress of laser-assisted chemical vapor deposition[J]. Opto-Electron Eng, 2022, 49(2): 210333. doi: 10.12086/oee.2022.210333
Citation: Fan L S, Liu F, Wu G L, et al. Research progress of laser-assisted chemical vapor deposition[J]. Opto-Electron Eng, 2022, 49(2): 210333. doi: 10.12086/oee.2022.210333

Research progress of laser-assisted chemical vapor deposition

    Fund Project: National Natural Science Foundation of China (51975533) and 111 Project from Overseas Expertise Introduction Center for Discipline Innovation (D16004)
More Information
  • Laser chemical vapor deposition (LCVD) technology has its unique advantages in reducing deposition temperatures, enhancing film purity and directly writing complex thin film patterns compared with conventional chemical vapor deposition (CVD). This technology has been widely applied in thin film deposition and attracted growing attention from both research and industries. This review categorizes the LCVD technology into three types according to the laser-matter interaction mechanisms, including laser pyrolysis, laser photolysis, and laser resonance excitation sensitization. We illustrate the deposition principles governed by the three different mechanisms in detail, and briefly introduce the commonly used equipment, and summarize the latest research progress of LCVD technology in synthesis and applications of metals, carbon-based materials, oxides and semiconductors. The detection and analysis methods used in LCVD are specially introduced, and the challenges and prospects of LCVD in material synthesis are discussed.
  • 加载中
  • [1] Moore C A, Yu Z Q, Thompson L R, et al. Laser and electron beam assisted processing[M]//Seshan K. Handbook of Thin Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applicatios. Norwich: William Andrew Publishing, 2001: 349–379.

    Google Scholar

    [2] Mazumder J, Kar A. Theory and Application of Laser Chemical Vapor Deposition[M]. New York: Plenum Press, 1995.

    Google Scholar

    [3] Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition[J]. J Appl Phys, 2005, 98(1): 013505. doi: 10.1063/1.1940137

    CrossRef Google Scholar

    [4] Chhowalla M, Teo K B K, Ducati C, et al. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J]. J Appl Phys, 2001, 90(10): 5308−5317. doi: 10.1063/1.1410322

    CrossRef Google Scholar

    [5] Hawaldar R, Merino P, Correia M R, et al. Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition[J]. Sci Rep, 2012, 2: 682. doi: 10.1038/srep00682

    CrossRef Google Scholar

    [6] Liu Y, Koep E, Liu M L. Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition[J]. Chem Mater, 2005, 17(15): 3997−4000. doi: 10.1021/cm050451o

    CrossRef Google Scholar

    [7] Goto T. A review: structural oxide coatings by laser chemical vapor deposition[J]. J Wuhan Univ Technol-Mater Sci Ed, 2016, 31(1): 1−5. doi: 10.1007/s11595-016-1319-6

    CrossRef Google Scholar

    [8] 刘丽, 韦建军, 吴卫东, 等. 激光诱导化学气相沉积(LCVD)制膜技术[C]//2011中国功能材料科技与产业高层论坛论文集(第三卷), 2011: 232–235.

    Google Scholar

    Liu L, Wei J J, Wu W D, et al. Technology of thin films by LCVD[C]//Proceedings of 2011 China Functional Materials Technology and Industry Forum, 2011: 232–235.

    Google Scholar

    [9] 孙克, 赵岩, 张彩碚. 脉冲Nd: YAG激光诱导化学沉积金属Ag和Au[J]. 应用激光, 2002, 22(1): 15−18. doi: 10.3969/j.issn.1000-372X.2002.01.005

    CrossRef Google Scholar

    Sun K, Zhao Y, Zhang C B. Pulsed Nd: YAG laser induced chemical deposition of Ag and Au[J]. Appl Laser, 2002, 22(1): 15−18. doi: 10.3969/j.issn.1000-372X.2002.01.005

    CrossRef Google Scholar

    [10] Park B S, Malshe A P, Muyshondt A, et al. The effects of substrate properties on metal coatings from liquid medium by reactive laser deposition[J]. Surf Coat Technol, 1999, 115(2-3): 201−207. doi: 10.1016/S0257-8972(99)00245-5

    CrossRef Google Scholar

    [11] Chen Q J, Allen S D. Laser direct writing of aluminum conductor lines from a liquid phase precursor[J]. MRS Online Proc Lib, 1995, 397(1): 637−642.

    Google Scholar

    [12] Armstrong J V, Burk A A Jr, Coey J M D, et al. Wavelength control of iron/nickel composition in laser induced chemical vapor deposited films[J]. Appl Phys Lett, 1987, 50(18): 1231−1233. doi: 10.1063/1.97918

    CrossRef Google Scholar

    [13] Ehrlich D J, Osgood R M Jr, Deutsch T F. Spatially delineated growth of metal films via photochemical prenucleation[J]. Appl Phys Lett, 1981, 38(11): 946−948. doi: 10.1063/1.92192

    CrossRef Google Scholar

    [14] Popovici D, Piyakis K, Sacher E, et al. Terraced copper growth deposited onto teflon AF1600 by the excimer laser irradiation of Cu(hfac)Tmvs[J]. MRS Online Proc Lib, 1995, 397(1): 643−648.

    Google Scholar

    [15] Okoshi M, Toyoda K, Murahara M. Open air fabrication process of Cu thin films on Teflon surface using ArF excimer laser irradiation[J]. MRS Online Proc Lib, 1995, 397(1): 655−660.

    Google Scholar

    [16] Allen S D, Tringubo A B. Laser chemical vapor deposition of selected area Fe And W films[J]. J Appl Phys, 1983, 54(3): 1641−1643. doi: 10.1063/1.332154

    CrossRef Google Scholar

    [17] Liu Z Z, Xu Q F, Sun Q Y, et al. Effect of hydrogen flow on microtwins in 3C-SiC epitaxial films by laser chemical vapor deposition[J]. Thin Solid Films, 2019, 678: 8−15. doi: 10.1016/j.tsf.2019.03.036

    CrossRef Google Scholar

    [18] Xu Q F, Deng Z, Sun Q Y, et al. Electrically conducting graphene/SiC(111) composite coatings by laser chemical vapor deposition[J]. Carbon, 2018, 139: 76−84. doi: 10.1016/j.carbon.2018.06.038

    CrossRef Google Scholar

    [19] Zhu P P, Xu Q F, Chen R Y, et al. Structural study of β-SiC(001) films on Si(001) by laser chemical vapor deposition[J]. J Am Ceram Soc, 2017, 100(4): 1634−1641. doi: 10.1111/jace.14672

    CrossRef Google Scholar

    [20] Xu Q F, Zhu P P, Sun Q Y, et al. Elimination of double position domains (DPDs) in epitaxial 〈111〉-3C-SiC on Si(111) by laser CVD[J]. Appl Surf Sci, 2017, 426: 662−666. doi: 10.1016/j.apsusc.2017.07.239

    CrossRef Google Scholar

    [21] Cheng H, Tu R, Zhang S, et al. Preparation of highly Oriented β-SiC bulks by halide laser chemical vapor deposition[J]. J Eur Ceram Soc, 2017, 37(2): 509−515. doi: 10.1016/j.jeurceramsoc.2016.09.017

    CrossRef Google Scholar

    [22] Zhang S, Xu Q F, Tu R, et al. Growth mechanism and defects of <111>-oriented β-SiC films deposited by laser chemical vapor deposition[J]. J Am Ceram Soc, 2015, 98(1): 236−241. doi: 10.1111/jace.13248

    CrossRef Google Scholar

    [23] Zhang S, Tu R, Goto T. High-speed epitaxial growth of β-SiC film on Si(111) single crystal by laser chemical vapor deposition[J]. J Am Ceram Soc, 2012, 95(9): 2782−2784. doi: 10.1111/j.1551-2916.2012.05354.x

    CrossRef Google Scholar

    [24] Wan Z F, Chen X, Gu M. Laser scribed graphene for supercapacitors[J]. Opto-Electron Adv, 2021, 4(7): 200079. doi: 10.29026/oea.2021.200079

    CrossRef Google Scholar

    [25] 张鸿俭, 冯钟潮, 张鹤. TiN类薄膜的激光化学气相沉积[J]. 兵器材料科学与工程, 1999, 22(1): 41−44. doi: 10.3969/j.issn.1004-244X.1999.01.010

    CrossRef Google Scholar

    Zhang H J, Feng Z C, Zhang H. Preparing films of titanium carbide and nitride on titanium alloy by lcvd[J]. Ordnance Mater Sci Eng, 1999, 22(1): 41−44. doi: 10.3969/j.issn.1004-244X.1999.01.010

    CrossRef Google Scholar

    [26] 涂溶, 胡璇, 章嵩, 等. 碳化硼薄膜制备技术研究进展[J]. 现代技术陶瓷, 2018, 39(6): 417−431.

    Google Scholar

    Tu R, Hu X, Zhang S, et al. Preparation methods of boron carbide thin films[J]. Adv Ceram, 2018, 39(6): 417−431.

    Google Scholar

    [27] Thirugnanam P, Xiong W, Mahjouri-Samani M, et al. Rapid growth of m-plane oriented gallium nitride nanoplates on silicon substrate using laser-assisted metal organic chemical vapor deposition[J]. Cryst Growth Des, 2013, 13(7): 3171−3176. doi: 10.1021/cg400541e

    CrossRef Google Scholar

    [28] Wang T, Tu R, Zhang C L, et al. Influence of oxygen partial pressure on SmBa2Cu3O7-δ film deposited by laser chemical vapor deposition[J]. J Asian Ceram Soc, 2021, 9(1): 197−207. doi: 10.1080/21870764.2020.1860434

    CrossRef Google Scholar

    [29] Goto T, Kimura T. High-speed oxide coating by laser chemical vapor deposition and their nano-structure[J]. Thin Solid Films, 2006, 515(1): 46−52. doi: 10.1016/j.tsf.2005.12.022

    CrossRef Google Scholar

    [30] Chi C, Katsui H, Goto T. Preparation of Na-β-alumina films by laser chemical vapor deposition[J]. Surf Coat Technol, 2015, 276: 534−538. doi: 10.1016/j.surfcoat.2015.06.019

    CrossRef Google Scholar

    [31] Zhang C G, Fan Y, Zhao J L, et al. Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition[J]. J Adv Ceram, 2021, 10(3): 520−528. doi: 10.1007/s40145-020-0454-x

    CrossRef Google Scholar

    [32] Yang G, Wang D J, Zhang C, et al. Fabrication of gadolinium zirconate films by laser CVD[J]. Ceram Int, 2019, 45(4): 4926−4933. doi: 10.1016/j.ceramint.2018.11.192

    CrossRef Google Scholar

    [33] Wang D J, Liu Y C, Zhu C H, et al. Preparation of lanthanum zirconate films With a widely controllable La/Zr ratio by LCVD[J]. Ceram Int, 2018, 44(9): 10621−10627. doi: 10.1016/j.ceramint.2018.03.088

    CrossRef Google Scholar

    [34] Yang G, Mao X X, Wang D J, et al. Fabrication of columnar structured lanthanum zirconate films by laser CVD[J]. J Am Ceram Soc, 2017, 100(9): 4232−4239. doi: 10.1111/jace.14923

    CrossRef Google Scholar

    [35] Duty C, Jean D, Lackey W J. Laser chemical vapour deposition: materials, modelling, and process control[J]. Int Mater Rev, 2001, 46(6): 271−287. doi: 10.1179/095066001771048727

    CrossRef Google Scholar

    [36] 张魁武. 激光化学气相沉积(连载之一)[J]. 金属热处理, 2007, 32(6): 118−126. doi: 10.3969/j.issn.0254-6051.2007.06.033

    CrossRef Google Scholar

    Zhang K W. Laser chemical vapour deposition (LCVD) (Ⅰ)[J]. Heat Treat Met, 2007, 32(6): 118−126. doi: 10.3969/j.issn.0254-6051.2007.06.033

    CrossRef Google Scholar

    [37] 刘江龙, 邹至荣. 激光化学气相沉积薄膜材料技术的研究进展[J]. 材料导报, 1991, 5(10): 20−26.

    Google Scholar

    Liu J L, Zou J L. Research progress of laser chemical vapor deposition thin film material technology[J]. Mater Rep, 1991, 5(10): 20−26.

    Google Scholar

    [38] Dittrich S, Barcikowski S, Gökce B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease[J]. Opto-Electron Adv, 2021, 4(1): 200072. doi: 10.29026/oea.2021.200072

    CrossRef Google Scholar

    [39] Zhang C Y, Zhou W, Geng D, et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures[J]. Opto-Electron Adv, 2021, 4(4): 200061.

    Google Scholar

    [40] Graus P, Möller T B, Leiderer P, et al. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism[J]. Opto-Electron Adv, 2020, 3(1): 190027.

    Google Scholar

    [41] Fan L, Constantin L, Wu Z P, et al. Laser vibrational excitation of radicals to prevent crystallinity degradation caused by boron doping in diamond[J]. Sci Adv, 2021, 7(4): eabc7547. doi: 10.1126/sciadv.abc7547

    CrossRef Google Scholar

    [42] Xu L F, Ito A, Goto T. High-speed deposition of tetragonal-ZrO2-dispersed SiO2 nanocomposite films by laser chemical vapor deposition[J]. Mater Lett, 2015, 154: 85−89. doi: 10.1016/j.matlet.2015.04.065

    CrossRef Google Scholar

    [43] Kadokura H, Ito A, Kimura T, et al. Moderate temperature and high-speed synthesis Of α-Al2O3 films by laser chemical vapor deposition using Nd: YAG laser[J]. Surf Coat Technol, 2010, 204(14): 2302−2306. doi: 10.1016/j.surfcoat.2009.12.029

    CrossRef Google Scholar

    [44] Ito A, Kadokura H, Kimura T, et al. Texture and orientation characteristics of α-Al2O3 films prepared by laser chemical vapor deposition using Nd: YAG laser[J]. J Alloys Compd, 2010, 489(2): 469−474. doi: 10.1016/j.jallcom.2009.09.088

    CrossRef Google Scholar

    [45] Fan L S, Xiong W, Jiang L J, et al. Fabrication of graphene patterns directly on SiO2/Si substrates using laser-induced chemical vapor deposition[J]. ICALEO, 2014, 2014: 1215−1219.

    Google Scholar

    [46] Zhang G F, Buck V. Diamond films synthesized by pulsed-laser assisted hot-filament CVD At 0.2 mbar pressure[J]. Adv Eng Mater, 2001, 3(1-2): 81−84. doi: 10.1002/1527-2648(200101)3:1/2<81::AID-ADEM81>3.0.CO;2-K

    CrossRef Google Scholar

    [47] 张伟, 陈小英, 马永生, 等. 激光化学气相沉积法在TFT-LCD电路缺陷维修中的应用[J]. 液晶与显示, 2019, 34(8): 755−763. doi: 10.3788/YJYXS20193408.0755

    CrossRef Google Scholar

    Zhang W, Chen X Y, Ma Y S, et al. Application of laser chemical vapor deposition in repairing TFT-LCD circuit defects[J]. Chin J Liq Cryst Displays, 2019, 34(8): 755−763. doi: 10.3788/YJYXS20193408.0755

    CrossRef Google Scholar

    [48] Banerji N, Serra J, Serra C, et al. Comparison of modifications induced by ArF excimer laser irradiation on silicon nitride films deposited by different LCVD methods[J]. Surf Coat Technol, 1998, 100–101: 393−397.

    Google Scholar

    [49] Morjan I, Soare I, Alexandrescu R, et al. Carbon nanotubes growth from C2H2 and C2H4/NH3 by catalytic LCVD on supported iron-carbon nanocomposites[J]. Phys E:Low-Dimens Syst Nanostruct, 2007, 37(1-2): 26−33. doi: 10.1016/j.physe.2006.10.009

    CrossRef Google Scholar

    [50] Fan L S, Zhou Y S, Wang M M, et al. Seed-free deposition of large-area adhesive diamond films on copper surfaces processed and patterned by femtosecond lasers[J]. Thin Solid Films, 2017, 636: 499−505. doi: 10.1016/j.tsf.2017.06.058

    CrossRef Google Scholar

    [51] Molian P A, Waschek A. CO2 laser deposition of diamond thin films on electronic materials[J]. J Mater Sci, 1993, 28(7): 1733−1737. doi: 10.1007/BF00595739

    CrossRef Google Scholar

    [52] Oliveira M N, do Rego A M B, Conde O. XPS investigation of BxNyCz coatings deposited by laser assisted chemical vapour desposition[J]. Surf Coat Technol, 1998, 100–101: 398−403.

    Google Scholar

    [53] Golgir H R, Gao Y, Zhou Y S, et al. Effect of laser-assisted resonant excitation on the growth of GaN films[C]//Proceedings of the 33nd International Congress on Applications of Lasers and Electro-Optics (ICALEO), 2014.

    Google Scholar

    [54] Golgir H R, Gao Y, Zhou Y S, et al. Low-temperature growth of crystalline gallium nitride films using vibrational excitation of ammonia molecules in laser-assisted metalorganic chemical vapor deposition[J]. Cryst Growth Des, 2014, 14(12): 6248−6253. doi: 10.1021/cg500862b

    CrossRef Google Scholar

    [55] Longtin R, Fauteux C, Pegna J, et al. Micromechanical testing of carbon fibers deposited by low-pressure laser-assisted chemical vapor deposition[J]. Carbon, 2004, 42(14): 2905−2913. doi: 10.1016/j.carbon.2004.06.039

    CrossRef Google Scholar

    [56] Lindstam M, Boman M, Carlsson J O. Area selective laser chemical vapor deposition of diamond and graphite[J]. Appl Surf Sci, 1997, 109–110: 462−466.

    Google Scholar

    [57] Maxwell J L, Boman M, Springer R W, et al. Process-structure map for diamond-like carbon fibers from ethene at hyperbaric pressures[J]. Adv Funct Mater, 2005, 15(7): 1077−1087. doi: 10.1002/adfm.200400252

    CrossRef Google Scholar

    [58] Gao M, Ito A, Goto T. Preparation of γ-Al2O3 films by laser chemical vapor deposition[J]. Appl Surf Sci, 2015, 340: 160−165. doi: 10.1016/j.apsusc.2015.02.196

    CrossRef Google Scholar

    [59] Constantin L, Fan L S, Azina C, et al. Effects of laser photolysis of hydrocarbons at 193 and 248 nm on chemical vapor deposition of diamond films[J]. Cryst Growth Des, 2018, 18(4): 2458−2466. doi: 10.1021/acs.cgd.8b00084

    CrossRef Google Scholar

    [60] 周政卓, 曾永健, 邱明新, 等. 激光诱导化学反应合成硫化铅、氧化铅薄膜[J]. 应用激光, 1985, 5(6): 254−256.

    Google Scholar

    Zhou Z Z, Zeng Y J, Qiu M X, et al. Lead sulphide and lead oxide films synthesised by laser induced chemical reaction[J]. Appl Laser, 1985, 5(6): 254−256.

    Google Scholar

    [61] Fan L S, Constantin L, Li D W, et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films[J]. Light:Sci Appl, 2018, 7: 17177. doi: 10.1038/lsa.2017.177

    CrossRef Google Scholar

    [62] Crunteanu A, Cireasa R, Alexandrescu R, et al. Influence of the surface treatment of the substrate in the LCVD of CNx films[J]. Surf Coat Technol, 1998, 100–101: 173−179.

    Google Scholar

    [63] Liu L, Deng L M, Fan L S, et al. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas[J]. Opt Express, 2017, 25(22): 27000−27007. doi: 10.1364/OE.25.027000

    CrossRef Google Scholar

    [64] 徐捷, 吕新明, 楼祺洪. 准分子激光诱导沉积锰和钨薄膜[J]. 中国激光, 1992, 19(5): 357−362. doi: 10.3321/j.issn:0258-7025.1992.05.009

    CrossRef Google Scholar

    Xu J, Lü X M, Lou Q H. Excimer laser-induced deposition of manganese and tungsten thin film[J]. Chin J Lasers, 1992, 19(5): 357−362. doi: 10.3321/j.issn:0258-7025.1992.05.009

    CrossRef Google Scholar

    [65] 强游. 激光化学气相沉积[J]. 真空与低温, 1987(1): 44−49.

    Google Scholar

    Qiang Y. Laser chemical vapor deposition[J]. Vac Cryog, 1987(1): 44−49.

    Google Scholar

    [66] van de Burgt Y. Laser-assisted growth of carbon nanotubes-a review[J]. J Laser Appl, 2014, 26(3): 032001. doi: 10.2351/1.4869257

    CrossRef Google Scholar

    [67] Conde O, Silvestre A J. Laser-assisted deposition of thin films from photoexcited vapour phases[J]. Appl Phys A, 2004, 79(3): 489−497. doi: 10.1007/s00339-004-2566-5

    CrossRef Google Scholar

    [68] Nelson L S, Richardson N L. Formation of thin rods of pyrolytic carbon by heating With a focused carbon dioxide laser[J]. Mater Res Bull, 1972, 7(9): 971−976. doi: 10.1016/0025-5408(72)90087-6

    CrossRef Google Scholar

    [69] Chizari S, Shaw L A, Behera D, et al. Current challenges and potential directions towards precision microscale additive manufacturing-Part III: energy induced deposition and hybrid electrochemical processes[J]. Precis Eng, 2021, 68: 174−186. doi: 10.1016/j.precisioneng.2020.12.013

    CrossRef Google Scholar

    [70] Spreafico C, Russo D, Degl'Innocenti R. Laser pyrolysis in papers and patents[J]. J Intell Manuf, 2022, 33(2): 353−385. doi: 10.1007/s10845-021-01809-9

    CrossRef Google Scholar

    [71] Matsumoto S, Kaneda Y, Ito A. Highly self-oriented growth of (020) and (002) monoclinic HfO2 thick films using laser chemical vapor deposition[J]. Ceram Int, 2020, 46(2): 1810−1815. doi: 10.1016/j.ceramint.2019.09.156

    CrossRef Google Scholar

    [72] Katsui H, Harada K, Kondo N, et al. Preparation of boron carbon oxynitride phosphor film via laser chemical vapor deposition and annealing[J]. Surf Coat Technol, 2020, 394: 125851. doi: 10.1016/j.surfcoat.2020.125851

    CrossRef Google Scholar

    [73] Katsui H, Harada K, Kondo N, et al. Preparation of zirconium carbonitride by laser chemical vapor deposition using alkyl-amide precursor As a single source[J]. J Ceram Soc Jpn, 2020, 128(11): 855−862. doi: 10.2109/jcersj2.20081

    CrossRef Google Scholar

    [74] Chen J C, Ito A, Goto T. High-speed epitaxial growth of SrTiO3 transparent thick films composed of close-packed nanocolumns using laser chemical vapor deposition[J]. Vacuum, 2020, 177: 109424. doi: 10.1016/j.vacuum.2020.109424

    CrossRef Google Scholar

    [75] Sakai T, Kato T, Katsui H, et al. Preparation of Y-doped BaZrO3 thin film electrolyte by laser chemical vapor deposition[J]. Mater Today Commun, 2020, 24: 101184. doi: 10.1016/j.mtcomm.2020.101184

    CrossRef Google Scholar

    [76] Ito A, Sekiyama M, Hara T, et al. Self-oriented growth Of β-Yb2Si2O7 and X1/X2-Yb2SiO5 coatings using laser chemical vapor deposition[J]. Ceram Int, 2020, 46(7): 9548−9553. doi: 10.1016/j.ceramint.2019.12.217

    CrossRef Google Scholar

    [77] Katsui H, Kondo N. Preferred orientations and microstructures of lanthanum phosphate films prepared via laser chemical vapor deposition[J]. J Cryst Growth, 2019, 519: 46−53. doi: 10.1016/j.jcrysgro.2019.05.005

    CrossRef Google Scholar

    [78] Merenkov I S, Katsui H, Khomyakov M N, et al. Extraordinary synergetic effect of precursors in laser CVD deposition of SiBCN films[J]. J Eur Ceram Soc, 2019, 39(16): 5123−5131. doi: 10.1016/j.jeurceramsoc.2019.08.006

    CrossRef Google Scholar

    [79] Bäuerle D. Laser processing and chemistry [M]. Springer Science & Business Media, 2011.

    Google Scholar

    [80] Uesugi F, Morishige Y, Shinzawa T, et al. Low resistivity contact formation for Lsi interconnection with short-pulse-laser induced Mo CVD[J]. MRS Online Proc Lib, 1987, 101(1): 61−65.

    Google Scholar

    [81] Jeong K, Lee J, Byun I, et al. Pulsed laser chemical vapor deposition of a mixture of W, WO2, and WO3 from W(CO)6 at atmospheric pressure[J]. Thin Solid Films, 2017, 626: 145−153. doi: 10.1016/j.tsf.2017.02.043

    CrossRef Google Scholar

    [82] Jeong K, Lee J, Byun I, et al. Synthesis of highly conductive cobalt thin films by LCVD at atmospheric pressure[J]. Mater Sci Semicond Process, 2017, 68: 245−251. doi: 10.1016/j.mssp.2017.06.032

    CrossRef Google Scholar

    [83] Stuke M, Mueller K, Mueller T, et al. Laser-direct-write creation of three-dimensional OREST microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution[J]. Appl Phys A, 2005, 81(5): 915−922. doi: 10.1007/s00339-005-3280-7

    CrossRef Google Scholar

    [84] Ten J S, Sparkes M, O'Neill W. Femtosecond laser-induced chemical vapor deposition of tungsten quasi-periodic structures on silicon substrates[J]. J Laser Appl, 2018, 30(3): 032606. doi: 10.2351/1.5040637

    CrossRef Google Scholar

    [85] Ning B, Xia T, Tong Z X, et al. Experimental and numerical studies of tungsten line growth in laser chemical vapor deposition[J]. Int J Heat Mass Transf, 2019, 140: 564−578. doi: 10.1016/j.ijheatmasstransfer.2019.06.001

    CrossRef Google Scholar

    [86] Westberg H, Boman M, Norekrans A S, et al. Carbon growth by thermal laser-assisted chemical vapour deposition[J]. Thin Solid Films, 1992, 215(2): 126−133. doi: 10.1016/0040-6090(92)90426-C

    CrossRef Google Scholar

    [87] Longtin R, Fauteux C, Coronel E, et al. Nanoindentation of carbon microfibers deposited by laser-assisted chemical vapor deposition[J]. Appl Phys A, 2004, 79(3): 573−577. doi: 10.1007/s00339-003-2449-1

    CrossRef Google Scholar

    [88] Fauteux C, Longtin R, Pegna J, et al. Raman characterization of laser grown carbon microfibers as a function of experimental parameters[J]. Thin Solid Films, 2004, 453–454: 606−610.

    Google Scholar

    [89] Fauteux C, Longtin R, Pegna J, et al. Microstructure and growth mechanism of laser grown carbon microrods As a function of experimental parameters[J]. J Appl Phys, 2004, 95(5): 2737−2743. doi: 10.1063/1.1641954

    CrossRef Google Scholar

    [90] Park J B, Xiong W, Xie Z Q, et al. Transparent interconnections formed by rapid single-step fabrication of graphene patterns[J]. Appl Phys Lett, 2011, 99(5): 053103. doi: 10.1063/1.3622660

    CrossRef Google Scholar

    [91] Park J B, Xiong W, Gao Y, et al. Fast growth of graphene patterns by laser direct writing[J]. Appl Phys Lett, 2011, 98(12): 123109. doi: 10.1063/1.3569720

    CrossRef Google Scholar

    [92] Um J W, Kim S Y, Lee B H, et al. Direct writing of graphite thin film by laser-assisted chemical vapor deposition[J]. Carbon, 2020, 169: 163−171. doi: 10.1016/j.carbon.2020.07.035

    CrossRef Google Scholar

    [93] Lin Z, Huang T, Ye X H, et al. Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser[J]. Nanotechnology, 2013, 24(27): 275302. doi: 10.1088/0957-4484/24/27/275302

    CrossRef Google Scholar

    [94] Tu R, Liang Y, Zhang C, et al. Fast synthesis of high-quality large-area graphene by laser CVD[J]. Appl Surf Sci, 2018, 445: 204−210. doi: 10.1016/j.apsusc.2018.03.184

    CrossRef Google Scholar

    [95] Ristić G S, Trtica M S, Miljanić S Š. Diamond synthesis by lasers: recent progress[J]. Quim Nova, 2012, 35(7): 1417−1422.

    Google Scholar

    [96] Tóth Z, Mechler Á, Heszler P. Local laser-assisted chemical vapor deposition of diamond[J]. Appl Surf Sci, 2000, 168(1-4): 5−8. doi: 10.1016/S0169-4332(00)00563-8

    CrossRef Google Scholar

    [97] Zhang S, Xu Q F, Tu R, et al. High-speed preparation of <111>- and <110>-oriented β-SiC films by laser chemical vapor deposition[J]. J Am Ceram Soc, 2014, 97(3): 952−958. doi: 10.1111/jace.12706

    CrossRef Google Scholar

    [98] Li B, Li Q, Katsui H, et al. Effect of the vacuum degree on the orientation and the microstructure Of β-SiC films prepared by laser chemical vapour deposition[J]. Mater Lett, 2016, 182: 81−84. doi: 10.1016/j.matlet.2016.06.091

    CrossRef Google Scholar

    [99] Li Y, Katsui H, Goto T. Highly (111)-oriented SiC films on glassy carbon prepared by laser chemical vapor deposition[J]. J Korean Ceram Soc, 2016, 53(6): 647−651. doi: 10.4191/kcers.2016.53.6.647

    CrossRef Google Scholar

    [100] Xu Q F, Tu R, Sun Q Y, et al. Morphology controlling of <111>-3C-SiC films by HMDS flow rate in LCVD[J]. RSC Adv, 2019, 9(5): 2426−2430. doi: 10.1039/C8RA09509D

    CrossRef Google Scholar

    [101] Tu R, Hu Z Y, Xu Q F, et al. Epitaxial growth of 3C-SiC (111) on Si via laser CVD carbonization[J]. J Asian Ceram Soc, 2019, 7(3): 312−320. doi: 10.1080/21870764.2019.1631995

    CrossRef Google Scholar

    [102] Sun Q Y, Yang M J, Li J, et al. Heteroepitaxial growth of thick 3C-SiC (110) films by laser CVD[J]. J Am Ceram Soc, 2019, 102(8): 4480−4491. doi: 10.1111/jace.16297

    CrossRef Google Scholar

    [103] Sun Q Y, Zhu P P, Xu Q F, et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition[J]. J Am Ceram Soc, 2018, 101(3): 1048−1057. doi: 10.1111/jace.15260

    CrossRef Google Scholar

    [104] Zhu P P, Yang M J, Xu Q F, et al. Epitaxial growth of 3C-SiC on Si(111) and (001) by laser CVD[J]. J Am Ceram Soc, 2018, 101(9): 3850−3856. doi: 10.1111/jace.15557

    CrossRef Google Scholar

    [105] Goto T, Banal R, Kimura T. Morphology and preferred orientation of Y2O3 film prepared by high-speed laser CVD[J]. Surf Coat Technol, 2007, 201(12): 5776−5781. doi: 10.1016/j.surfcoat.2006.10.023

    CrossRef Google Scholar

    [106] Zhao P, Su S, Wang Y, et al. High-speed preparation of highly (100)-oriented CeO2 film by laser chemical vapor deposition[J]. J Am Ceram Soc, 2016, 99(9): 3104−3110. doi: 10.1111/jace.14279

    CrossRef Google Scholar

    [107] Kimura T. Development of electrospray laser chemical vapour deposition for homogenous alumina coatings[J]. J Wuhan Univ Technol-Mater Sci Ed, 2016, 31(1): 11−14. doi: 10.1007/s11595-016-1321-z

    CrossRef Google Scholar

    [108] Ito A. Chemical vapor deposition of highly oriented ceramic coatings In a high-intensity laser irradiation[J]. J Ceram Soc Jpn, 2021, 129(11): 646−653. doi: 10.2109/jcersj2.21135

    CrossRef Google Scholar

    [109] Tu R, Huo G S, Kimura T, et al. Preparation of Magneli phases of Ti27O52 and Ti6O11 films by laser chemical vapor deposition[J]. Thin Solid Films, 2010, 518(23): 6927−6932. doi: 10.1016/j.tsf.2010.07.050

    CrossRef Google Scholar

    [110] Goto T. Thermal barrier coatings deposited by laser CVD[J]. Surf Coat Technol, 2005, 198(1-3): 367−371. doi: 10.1016/j.surfcoat.2004.10.084

    CrossRef Google Scholar

    [111] Suehiro S, Kimura T, Yokoe D, et al. Synthesis of Highly c-axis-oriented ZnO thin films using novel laser-enhanced electrospray CVD under atmospheric pressure[J]. CrystEngComm, 2017, 19(40): 5995−6001. doi: 10.1039/C7CE01333G

    CrossRef Google Scholar

    [112] Lange A P, Elhadj S, Matthews M J. Formation of nano-volcano structures during atmospheric, laser-driven chemical vapor deposition[J]. J Phys Chem C, 2020, 124(43): 23913−23922. doi: 10.1021/acs.jpcc.0c06551

    CrossRef Google Scholar

    [113] Sharma B, Sharma A. Enhanced surface dynamics and magnetic switching of α-Fe2O3 films prepared by laser assisted chemical vapor deposition[J]. Appl Surf Sci, 2021, 567: 150724. doi: 10.1016/j.apsusc.2021.150724

    CrossRef Google Scholar

    [114] Ito A, Endo J, Kimura T, et al. Eggshell- and fur-like microstructures of yttrium silicate film prepared by laser chemical vapor deposition[J]. Mater Chem Phys, 2011, 125(1-2): 242−246. doi: 10.1016/j.matchemphys.2010.09.014

    CrossRef Google Scholar

    [115] Tu R, Kimura T, Goto T. Rapid synthesis of yttria-partially-stabilized zirconia films by metal-organic chemical vapor deposition[J]. Mater Trans, 2002, 43(9): 2354−2356. doi: 10.2320/matertrans.43.2354

    CrossRef Google Scholar

    [116] Ito A, Joo H S, Kim T S, et al. Synthesis of pseudobrookite titanium oxynitride Ti3-δO4N films by laser chemical vapor deposition[J]. Vacuum, 2015, 116: 121−123. doi: 10.1016/j.vacuum.2015.03.015

    CrossRef Google Scholar

    [117] Ito A, Nishigaki S, Goto T. A feather-like structure of β-Al2TiO5 film prepared by laser chemical vapor deposition[J]. J Eur Ceram Soc, 2015, 35(7): 2195−2199. doi: 10.1016/j.jeurceramsoc.2015.01.027

    CrossRef Google Scholar

    [118] Chi C, Katsui H, Goto T. Preparation of Na-Al-O films by laser chemical vapor deposition[J]. Mater Chem Phys, 2015, 160: 456−460. doi: 10.1016/j.matchemphys.2015.05.024

    CrossRef Google Scholar

    [119] Huerta-Flores A M, Chen J C, Torres-Martínez L M, et al. Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution[J]. Fuel, 2017, 197: 174−185. doi: 10.1016/j.fuel.2017.02.016

    CrossRef Google Scholar

    [120] Huerta-Flores A M, Chen J C, Ito A, et al. High-speed deposition of oriented orthorhombic NaTaO3 films using laser chemical vapor deposition[J]. Mater Lett, 2016, 184: 257−260. doi: 10.1016/j.matlet.2016.08.083

    CrossRef Google Scholar

    [121] Chi C, Katsui H, Tu R, et al. Oriented growth and electrical property of LiAl5O8 film by laser chemical vapor deposition[J]. J Ceram Soc Jpn, 2016, 124(1): 111−115. doi: 10.2109/jcersj2.15220

    CrossRef Google Scholar

    [122] Yu S, Tu R, Goto T. Preparation of SiOC nanocomposite films by laser chemical vapor deposition[J]. J Eur Ceram Soc, 2016, 36(3): 403−409. doi: 10.1016/j.jeurceramsoc.2015.10.029

    CrossRef Google Scholar

    [123] Chen J C, Ito A, Goto T. High-speed deposition of highly (001)-oriented SrCO3 films prepared using laser chemical vapor deposition[J]. Ceram Int, 2015, 41(9): 11810−11814. doi: 10.1016/j.ceramint.2015.05.149

    CrossRef Google Scholar

    [124] Yang X J, Guo D Y. Preparation of (511)-oriented BaTi2O5 thick film on Pt/MgO(111) substrate by laser chemical vapor deposition[J]. Sens Mater, 2021, 33(7): 2531−2535.

    Google Scholar

    [125] Chang J Y, Qi Y H, Zhao H Y, et al. Laser chemical vapor deposition of Lu2O3: Eu scintillation film[J]. Mater Res Express, 2019, 6(8): 086437. doi: 10.1088/2053-1591/ab2000

    CrossRef Google Scholar

    [126] Chen J C, Ito A, Goto T. High-speed epitaxial growth of (110) SrTiO3 films on (110) MgAl2O4 substrates using laser chemical vapour deposition[J]. Mater Today:Proc, 2017, 4(11): 11461−11464. doi: 10.1016/j.matpr.2017.09.029

    CrossRef Google Scholar

    [127] Chen J C, Ito A, Goto T. High-speed epitaxial growth of SrTiO3 films on MgO substrates by laser chemical vapor deposition[J]. Ceram Int, 2016, 42(8): 9981−9987. doi: 10.1016/j.ceramint.2016.03.100

    CrossRef Google Scholar

    [128] Zhao P, Zhang Q, Wu W, et al. Preparation of (110)-oriented SrTiO3 film on quartz glass by laser chemical vapor deposition[J]. J Am Ceram Soc, 2019, 102(4): 2135−2142. doi: 10.1111/jace.16009

    CrossRef Google Scholar

    [129] Zhao P, Su S, Wang Y, et al. Investigation on influence of deposition rate of YBa2Cu3O7-δ superconducting film prepared on Hastelloy C276 substrate by spray atomizing and coprecipitating laser chemical vapor deposition[J]. Thin Solid Films, 2016, 599: 179−186. doi: 10.1016/j.tsf.2016.01.003

    CrossRef Google Scholar

    [130] Zhao P, Ito A, Goto T. Effects of film thickness on the electrical properties of YBa2Cu3O7-δ films grown On a multilayer-coated Hastelloy C276 tape by laser CVD[J]. J Electroceram, 2015, 34(2-3): 137−141. doi: 10.1007/s10832-014-9962-9

    CrossRef Google Scholar

    [131] Zhao P, Wang Y, Huang Z L, et al. Influence of laser power on orientation, microstructure and electrical performance of YBa2Cu3O7-x film prepared on (001) SrTiO3 single crystal substrate by spray atomizing and coprecipitating laser chemical vapor deposition[J]. Ceram Int, 2015, 41(3): 3624−3630. doi: 10.1016/j.ceramint.2014.11.027

    CrossRef Google Scholar

    [132] Tu R, Wang K D, Wang T, et al. Structural study of epitaxial NdBa2Cu3O7-x films by laser chemical vapor deposition[J]. RSC Adv, 2018, 8(35): 19811−19817. doi: 10.1039/C8RA02758G

    CrossRef Google Scholar

    [133] Wang T, Wang K T, Tu R, et al. Thickness dependence of structure and superconductivity of the SmBa2Cu3O7 film by laser CVD[J]. RSC Adv, 2017, 7(89): 56166−56172. doi: 10.1039/C7RA12096F

    CrossRef Google Scholar

    [134] Loho C, Djenadic R, Bruns M, et al. Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries[J]. J Electrochem Soc, 2017, 164(1): A6131−A6139. doi: 10.1149/2.0201701jes

    CrossRef Google Scholar

    [135] Loho C, Djenadic R, Mund P, et al. On processing-structure-property relations and high ionic conductivity in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD[J]. Solid State Ionics, 2017, 313: 32−44. doi: 10.1016/j.ssi.2017.11.005

    CrossRef Google Scholar

    [136] Sun Q Y, Tu R, Xu Q F, et al. Nanoforest of 3C-SiC/graphene by laser chemical vapor deposition with high electrochemical performance[J]. J Power Sources, 2019, 444: 227308. doi: 10.1016/j.jpowsour.2019.227308

    CrossRef Google Scholar

    [137] Guo H, Yang X Y, Xu Q F, et al. Epitaxial growth and electrical performance of graphene/3C-SiC films by laser CVD[J]. J Alloys Compd, 2020, 826: 154198. doi: 10.1016/j.jallcom.2020.154198

    CrossRef Google Scholar

    [138] Yu S, Tu R, Ito A, et al. SiC-SiO2 nanocomposite films prepared by laser CVD using tetraethyl orthosilicate and acetylene as precursors[J]. Mater Lett, 2010, 64(20): 2151−2154. doi: 10.1016/j.matlet.2010.07.022

    CrossRef Google Scholar

    [139] Honda A, Kimura T, Ito A, et al. Rh-nanoparticle-dispersed ZrO2 films prepared by laser chemical vapor deposition[J]. Surf Coat Technol, 2012, 206(11-12): 3006−3010. doi: 10.1016/j.surfcoat.2011.12.038

    CrossRef Google Scholar

    [140] Ito A, You Y, Ichikawa T, et al. Preparation of Al2O3-ZrO2 nanocomposite films by laser chemical vapour deposition[J]. J Eur Ceram Soc, 2014, 34(1): 155−159. doi: 10.1016/j.jeurceramsoc.2013.07.025

    CrossRef Google Scholar

    [141] Yang M J, Bai S N, Xu Q F, et al. Mechanical properties of high-crystalline diamond films grown via laser MPCVD[J]. Diam Relat Mater, 2020, 109: 108094. doi: 10.1016/j.diamond.2020.108094

    CrossRef Google Scholar

    [142] Xu Q F, Zhu P P, Sun Q Y, et al. Fast preparation of (111)-oriented β-SiC films without carbon formation by laser chemical vapor deposition from hexamethyldisilane without H2[J]. J Am Ceram Soc, 2018, 101(4): 1471−1478. doi: 10.1111/jace.15315

    CrossRef Google Scholar

    [143] Kuk S, Nam H K, Wang Z, et al. Effect of laser beam dimension on laser-assisted chemical vapor deposition of silicon nitride thin films[J]. J Nanosci Nanotechnol, 2018, 18(10): 7085−7089. doi: 10.1166/jnn.2018.15727

    CrossRef Google Scholar

    [144] 张永彬, 陈志磊, 宾韧, 等. 铀上激光辅助化学气相沉积镍薄膜研究[J]. 原子能科学技术, 2017, 51(3): 411−417. doi: 10.7538/yzk.2017.51.03.0411

    CrossRef Google Scholar

    Zhang Y B, Chen Z L, Bin R, et al. Study on nickel film on uranium by laser assisted chemical vapor deposition[J]. At Energy Sci Technol, 2017, 51(3): 411−417. doi: 10.7538/yzk.2017.51.03.0411

    CrossRef Google Scholar

    [145] Sousa P M, Silvestre A J, Conde O. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition[J]. Thin Solid Films, 2011, 519(11): 3653−3657. doi: 10.1016/j.tsf.2011.01.382

    CrossRef Google Scholar

    [146] 马兴孝, 孔繁敖. 激光化学[M]. 合肥: 中国科学技术大学出版社, 1990.

    Google Scholar

    Ma X X, Kong F A. Laser Chemistry[M]. Hefei: University of Science and Technology of China Press, 1990.

    Google Scholar

    [147] Ten J S, Sparkes M, O'Neill W. High speed, mask-less, laser controlled deposition of microscale tungsten tracks using 405 nm wavelength diode laser[J]. Proc SPIE, 2017, 10091: 100910C.

    Google Scholar

    [148] Park J B, Kim C J, Shin P E, et al. Hybrid LCVD of micro-metallic lines for TFT-LCD circuit repair[J]. Appl Surf Sci, 2006, 253(2): 1029−1035. doi: 10.1016/j.apsusc.2006.06.054

    CrossRef Google Scholar

    [149] Mukaida M, Osato K, Watanabe A, et al. Densification of Ta2O5 film prepared by KrF excimer laser CVD[J]. Thin Solid Films, 1993, 232(2): 180−184. doi: 10.1016/0040-6090(93)90006-B

    CrossRef Google Scholar

    [150] Sousa P M, Silvestre A J, Popovici N, et al. Morphological and structural characterization of CrO2/Cr2O3 films grown by laser-CVD[J]. Appl Surf Sci, 2005, 247(1-4): 423−428. doi: 10.1016/j.apsusc.2005.01.061

    CrossRef Google Scholar

    [151] Sousa P M, Silvestre A J, Popovici N, et al. KrF laser CVD of chromium oxide by photodissociation of Cr(CO)6[J]. Materials Science Forum, 2004, 455–456: 20−24.

    Google Scholar

    [152] Meng Q G, Witte R J, Gong Y J, et al. Thin film deposition and photodissociation mechanisms for lanthanide oxide production from tris(2, 2, 6, 6-tetramethyl-3, 5-heptanedionato)Ln(III) in Laser-Assisted MOCVD[J]. Chem Mater, 2010, 22(22): 6056−6064. doi: 10.1021/cm101283k

    CrossRef Google Scholar

    [153] Chen J C, Meng Q G, May P S, et al. Time-dependent excited-state molecular dynamics of photodissociation of lanthanide complexes for laser-assisted metal-organic chemical vapour deposition[J]. Mol Phys, 2014, 112(3-4): 508−517. doi: 10.1080/00268976.2013.845310

    CrossRef Google Scholar

    [154] Mulenko S A, Izvekov A V, Petrov Y N, et al. Laser photodeposition of thin semiconductor films from iron carbonyl vapors[J]. Appl Surf Sci, 2005, 248(1-4): 475−478. doi: 10.1016/j.apsusc.2005.03.067

    CrossRef Google Scholar

    [155] 戴国瑞, 姜喜兰, 南金, 等. 激光CVD制备SnO2薄膜的结构及其反应机理研究[J]. 半导体学报, 1998, 19(6): 427−430. doi: 10.3321/j.issn:0253-4177.1998.06.006

    CrossRef Google Scholar

    Dai G R, Jiang X L, Nan J, et al. Study of structure and reaction Mechanism of SnO2: thin films prepared by excimer laser-assisted CVD[J]. Chin J Semicond, 1998, 19(6): 427−430. doi: 10.3321/j.issn:0253-4177.1998.06.006

    CrossRef Google Scholar

    [156] Tsuji M, Sakumoto M, Itoh N, et al. SiO2 film growth by ArF laser photolysis of SiH4/N2O mixtures[J]. Appl Surf Sci, 1991, 51(3-4): 171−176. doi: 10.1016/0169-4332(91)90399-5

    CrossRef Google Scholar

    [157] Kitahama K, Hirata K, Nakamatsu H, et al. Synthesis of diamond by laser-induced chemical vapor deposition[J]. Appl Phys Lett, 1986, 49(11): 634−635. doi: 10.1063/1.97063

    CrossRef Google Scholar

    [158] Goto Y, Yagi T, Nagai H. Synthesis of diamond films by laser-induced chemical vapor deposition[J]. MRS Online Proc Lib, 1988, 129(1): 213−217.

    Google Scholar

    [159] Rebello J H D, Straub D L, Subramaniam V V. Diamond growth from a Co/CH4 mixture by laser excitation of Co: laser excited chemical vapor deposition[J]. J Appl Phys, 1992, 72(3): 1133−1136. doi: 10.1063/1.351790

    CrossRef Google Scholar

    [160] López E, Chiussi S, Kosch U, et al. Compositional, structural and optical properties of Si-Rich a-SiC: H thin films deposited by ArF-LCVD[J]. Appl Surf Sci, 2005, 248(1-4): 113−117. doi: 10.1016/j.apsusc.2005.03.011

    CrossRef Google Scholar

    [161] López E, Chiussi S, Kosch U, et al. A growth rate, structure and surface morphology study of Si1-x-yGexCy films deposited by ArF-LCVD in tilted geometry[J]. Vacuum, 2008, 82(12): 1525−1528. doi: 10.1016/j.vacuum.2008.03.018

    CrossRef Google Scholar

    [162] Chiussi S, López E, Serra J, et al. Influence of laser fluence in ArF-excimer laser assisted crystallisation Of a-SiGe: H films[J]. Appl Surf Sci, 2003, 208–209: 358−363.

    Google Scholar

    [163] López E, Chiussi S, González P, et al. Influence of the substrate temperature on the structure of Ge containing thin films produced by ArF laser induced chemical vapour deposition[J]. Appl Surf Sci, 2005, 248(1-4): 108−112. doi: 10.1016/j.apsusc.2005.03.091

    CrossRef Google Scholar

    [164] López E, Chiussi S, Serra C, et al. ArF-excimer laser induced chemical vapour deposition of amorphous hydrogenated SiGeC films[J]. Appl Surf Sci, 2003, 208–209: 682−687.

    Google Scholar

    [165] Kafizas A, Carmalt C J, Parkin I P. CVD and precursor chemistry of transition metal nitrides[J]. Coord Chem Rev, 2013, 257(13-14): 2073−2119. doi: 10.1016/j.ccr.2012.12.004

    CrossRef Google Scholar

    [166] Ishihara S, Hanabusa M. Laser-assisted chemical vapor deposition of titanium nitride films[J]. J Appl Phys, 1998, 84(1): 596−599. doi: 10.1063/1.368086

    CrossRef Google Scholar

    [167] Gong Y S, Tu R, Goto T. Effect of NH3 on the preparation of TiNx films by laser CVD using tetrakis-diethylamido-titanium[J]. J Alloys Compd, 2009, 485(1-2): 451−455. doi: 10.1016/j.jallcom.2009.05.137

    CrossRef Google Scholar

    [168] Gong Y S, Tu R, Goto T. Laser chemical vapor deposition of titanium nitride films with tetrakis (diethylamido) titanium and ammonia system[J]. Surf Coat Technol, 2010, 204(14): 2111−2117. doi: 10.1016/j.surfcoat.2009.10.042

    CrossRef Google Scholar

    [169] Gong Y S, Zhou W, Tu R, et al. Preparation of stoichiometric TiNx films by laser CVD with metalorganic precursor[J]. Adv Mater Res, 2011, 239–242: 318−321.

    Google Scholar

    [170] Kuk S, Park J, Zhang T, et al. Low temperature deposition of inorganic thin films by ultraviolet laser-assisted chemical vapor deposition[J]. Nanosci Nanotechnol Lett, 2016, 8(7): 586−591. doi: 10.1166/nnl.2016.2229

    CrossRef Google Scholar

    [171] Kuk S, Park J, Zhang T, et al. Low temperature deposition of inorganic films by excimer laser assisted chemical vapor deposition[J]. Proc SPIE, 2017, 10091: 1009105.

    Google Scholar

    [172] An K, Lee H N, Cho K H, et al. Role of a 193 nm ArF excimer laser in laser-assisted plasma-enhanced chemical vapor deposition of SiNx for low temperature thin film encapsulation[J]. Micromachines, 2020, 11(1): 88. doi: 10.3390/mi11010088

    CrossRef Google Scholar

    [173] An K, Lee H N, Cho K H, et al. Two-step fabrication of thin film encapsulation using laser assisted chemical vapor deposition and laser assisted plasma enhanced chemical vapor deposition for long-lifetime organic light emitting diodes[J]. Org Electron, 2021, 91: 106078. doi: 10.1016/j.orgel.2021.106078

    CrossRef Google Scholar

    [174] Kim K H, Kim K S, Ji Y J, et al. Silicon nitride deposited by laser assisted plasma enhanced chemical vapor deposition for next generation organic electronic devices[J]. Appl Surf Sci, 2021, 541: 148313. doi: 10.1016/j.apsusc.2020.148313

    CrossRef Google Scholar

    [175] Zhou B, Li X, Tansley T L, et al. Growth mechanisms in excimer laser photolytic deposition of gallium nitride at 500°C[J]. J Cryst Growth, 1996, 160(3-4): 201−206. doi: 10.1016/0022-0248(95)00602-8

    CrossRef Google Scholar

    [176] Golgir H R, Li D W, Keramatnejad K, et al. Fast growth of gan epilayers via laser-assisted metal-organic chemical vapor deposition for ultraviolet photodetector applications[J]. ACS Appl Mater Interfaces, 2017, 9(25): 21539−21547. doi: 10.1021/acsami.7b03554

    CrossRef Google Scholar

    [177] Golgir H R, Zhou Y S, Li D W, et al. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition[J]. J Appl Phys, 2016, 120(10): 105303. doi: 10.1063/1.4962426

    CrossRef Google Scholar

    [178] Gao Y, Zhou Y S, Park J B, et al. Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions[J]. Nanotechnology, 2011, 22(16): 165604. doi: 10.1088/0957-4484/22/16/165604

    CrossRef Google Scholar

    [179] Xie Z Q, Zhou Y S, He X N, et al. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling[J]. Cryst Growth Des, 2010, 10(4): 1762−1766. doi: 10.1021/cg9014515

    CrossRef Google Scholar

    [180] Xie Z Q, He X N, Hu W, et al. Excitations of precursor molecules by different laser powers in laser-assisted growth of diamond films[J]. Cryst Growth Des, 2010, 10(11): 4928−4933. doi: 10.1021/cg1010083

    CrossRef Google Scholar

    [181] Fan L S, Xie Z Q, Park J B, et al. Synthesis of nitrogen-doped diamond films using vibrational excitation of ammonia molecules in laser-assisted combustion flames[J]. J Laser Appl, 2012, 24(2): 022001. doi: 10.2351/1.3685299

    CrossRef Google Scholar

    [182] Fan L S, Zhou Y S, Wang M X, et al. Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition[J]. Laser Phys Lett, 2014, 11(7): 076002. doi: 10.1088/1612-2011/11/7/076002

    CrossRef Google Scholar

    [183] Fan L S, Zhou Y S, Wang M X, et al. Mass spectrometric investigation of the roles of several chemical intermediates in diamond synthesis[J]. RSC Adv, 2015, 5(7): 4822−4830. doi: 10.1039/C4RA09058F

    CrossRef Google Scholar

    [184] Zhou Y S, Fan L S, Xie Z Q, et al. Laser-assisted vibrational control of precursor molecules in diamond synthesis[J]. Curr Opin Solid State Mater Sci, 2015, 19(2): 107−114. doi: 10.1016/j.cossms.2014.10.003

    CrossRef Google Scholar

    [185] Zhang Y X, Chen Z Y, Zhang K T, et al. Laser-assisted metal-organic chemical vapor deposition of gallium nitride[J]. Phys Status Solidi (RRL)-Rapid Res Lett, 2021, 15(6): 2100202. doi: 10.1002/pssr.202100202

    CrossRef Google Scholar

    [186] Papanikolaou A, Tserevelakis G J, Melessanaki K, et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework[J]. Opto-Electron Adv, 2020, 3(2): 190037.

    Google Scholar

    [187] Jean D, Duty C, Johnson R, et al. Carbon fiber growth kinetics and thermodynamics using temperature controlled LCVD[J]. Carbon, 2002, 40(9): 1435−1445. doi: 10.1016/S0008-6223(01)00307-4

    CrossRef Google Scholar

    [188] Prieske M, Müller S, Woizeschke P. Interaction of methane concentration and deposition temperature in atmospheric laser based CVD diamond deposition on hard metal[J]. Coatings, 2019, 9(9): 537. doi: 10.3390/coatings9090537

    CrossRef Google Scholar

    [189] Chen X, Azer M N, Egland K M, et al. Laser chemical vapor deposition of titanium nitride and process diagnostics with laser induced fluorescence spectroscopy[M]//Mazumder J, Conde O, Villar R, et al. Laser Processing: Surface Treatment and Film Deposition. Dordrecht: Springer, 1996: 693–701.

    Google Scholar

    [190] Landström L, Kokavecz J, Lu J, et al. Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition[J]. J Appl Phys, 2004, 95(8): 4408−4414. doi: 10.1063/1.1667596

    CrossRef Google Scholar

    [191] Maxwell J L, Pegna J, Messia D V. Real-time volumetric growth rate measurements and feedback control of three-dimensional laser chemical vapor deposition[J]. Appl Phys A, 1998, 67(3): 323−329. doi: 10.1007/s003390050778

    CrossRef Google Scholar

    [192] Iida Y, Yeung E S. Acoustic monitoring of carbon film formation by laser-induced chemical vapor deposition[J]. Appl Spectrosc, 1993, 47(4): 523−527. doi: 10.1366/0003702934335010

    CrossRef Google Scholar

    [193] Guss G M, Sridharan A K, Elhadj S, et al. Nanoscale surface tracking of laser material processing using phase shifting diffraction interferometry[J]. Opt Express, 2014, 22(12): 14493−14504. doi: 10.1364/OE.22.014493

    CrossRef Google Scholar

    [194] Landström L, Lu J, Heszler P. Size-distribution and emission spectroscopy of W nanoparticles generated by laser-assisted CVD for different WF6/H2/Ar mixtures[J]. J Phys Chem B, 2003, 107(42): 11615−11621. doi: 10.1021/jp0343077

    CrossRef Google Scholar

    [195] Mahjouri M, Zhou Y S, Xiong W, et al. Growth of self-aligned single-walled carbon nanotubes by laser-assisted chemical vapor deposition[J]. Proc SPIE, 2008, 6880: 68800P. doi: 10.1117/12.762171

    CrossRef Google Scholar

  • Laser chemical vapor deposition (LCVD) is a promising method for selective deposition of solid materials via localized chemical vapor reaction driven by a laser beam. It has several advantages over traditional CVD processes including decreased deposition temperature, increased deposition rate, higher crystallization quality, superior spatial resolution, site-selective deposition characteristics and the ability to produce a wide range of complex 3D micro- and nanostructures. In this review, LCVD is divided into three types based on the interaction mechanisms of laser and gaseous precursor, i.e., pyrolytic LCVD, photolytic LCVD and vibrational excitation LCVD. In pyrolytic LCVD processes, a focused laser beam triggered by a continues CO2 laser or Nd:YAG laser is used to locally heat the surface of the substrate and material deposition occurs when the temperature near the irradiated area reaches the decomposition threshold of the gaseous precursor. This approach is often used to deposit small regions of 2D films with complex and fine patterns. Photolytic LCVD processes use photons from focused laser beams (typically generated by short-wavelength ultraviolet laser light source, such as excimer laser and high frequency output of Nd:YAG laser) to reactant gases, resulting in precise deposition of solid material in either 2D films or 3D structures. Photolytic LCVD processes rely on the photochemical action of the laser beam and the chemical reactants. The precursor gas molecules are directly dissociated by the high-energy photons and subsequently form a solid deposit on the surface of the substrate through recombination/re-decomposition. Photolytic LCVD typically utilizes pulsed lasers as their high peak power levels more effectively to drive the chemical reactions. This method is suitable for large-area film formation. Vibrational excitation LCVD often uses laser sources with adjustable wavelengths, such as infrared CO2 lasers and OPO lasers. By precisely modulating the laser wavelength, the laser energy is directionally coupled to selected gas molecules to induce efficient dissociation of key reaction molecules, resulting in deposition of solid material in a low ambient temperature. Vibrational excitation LCVD typically offers a higher deposition rate and a better film quality compared to the photolysis of the precursors with a UV laser. In this article, we first introduce the deposition principles and commonly used equipment of the three LCVD processes, and then a comprehensive survey of recent material deposition applications using this three LCVD approaches is presented. Finally, the challenges and opportunities in the application of LCVD for material preparation are summarized, and the development prospects of this technology are prospected.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Tables(4)

Article Metrics

Article views(15728) PDF downloads(3268) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint