Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics[J]. Opto-Electron Eng, 2022, 49(2): 210388. doi: 10.12086/oee.2022.210388
Citation: Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics[J]. Opto-Electron Eng, 2022, 49(2): 210388. doi: 10.12086/oee.2022.210388

Advance in femtosecond laser fabrication of flexible electronics

    Fund Project: Research Start-up Fund for Long-term Associate Professor of Shanghai Jiao Tong University (WF220405017)
More Information
  • Consumer electronical markets are now promoting a rapid advance in flexible electronics with high integration, miniaturization, and wearable properties, which in turn puts forward new requirements for the fabrication of flexible electronics. Photolithography techniques are advantageous for their high accuracy, but it is disadvantageous due to high cost, complexity, and low efficiency. In comparison, femtosecond (fs) laser micro-nano fabrication, as a high-efficiency and simple technique, has shown its capacity and potential for the fabrication of flexible electronics. This review summarizes five fs-laser based techniques for the fabrication of flexible electronics, including laser synthesis of nanomaterials in liquids, laser-induced nanomaterial chemical-reduction, laser-induced nano joining, laser electrode patterning, and laser surface texturing. The corresponding mechanisms are briefly introduced, followed by a demonstration of typical flexible electronics and their properties. Finally, the challenges in this field are analyzed, and our perspective is provided.
  • 加载中
  • [1] Xu K C, Lu Y Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics[J]. Adv Mater Technol, 2019, 4(3): 1800628. doi: 10.1002/admt.201800628

    CrossRef Google Scholar

    [2] Wan Z F, Chen X, Gu M. Laser scribed graphene for supercapacitors[J]. Opto-Electron Adv, 2021, 4(7): 200079. doi: 10.29026/oea.2021.200079

    CrossRef Google Scholar

    [3] Park J, Hwang J C, Kim G G, et al. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials[J]. InfoMat, 2020, 2(1): 33−56. doi: 10.1002/inf2.12047

    CrossRef Google Scholar

    [4] Abid N, Khan A M, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review[J]. Adv Colloid Interface Sci, 2022, 300: 102597. doi: 10.1016/j.cis.2021.102597

    CrossRef Google Scholar

    [5] Kim Y U, Kwon N Y, Park S H, et al. Patterned sandwich-type silver nanowire-based flexible electrode by photolithography[J]. ACS Appl Mater Interfaces, 2021, 13(51): 61463−61472. doi: 10.1021/acsami.1c19164

    CrossRef Google Scholar

    [6] Choi Y, Seong K D, Piao Y. Metal−organic decomposition ink for printed electronics[J]. Adv Mater Interfaces, 2019, 6(20): 1901002. doi: 10.1002/admi.201901002

    CrossRef Google Scholar

    [7] Ahn Y, Lee H, Lee D, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS Appl Mater Interfaces, 2014, 6(21): 18401−18407. doi: 10.1021/am504462f

    CrossRef Google Scholar

    [8] Li L H, Gao M, Guo Y Z, et al. Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing[J]. J Mater Chem C, 2017, 5(11): 2800−2806. doi: 10.1039/C6TC05227D

    CrossRef Google Scholar

    [9] Liao J N, Guo W, Peng P. Direct laser writing of copper-graphene composites for flexible electronics[J]. Opt Lasers Eng, 2021, 142: 106605. doi: 10.1016/j.optlaseng.2021.106605

    CrossRef Google Scholar

    [10] Zhou W P, Bai S, Ma Y, et al. Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength[J]. ACS Appl Mater Interfaces, 2016, 8(37): 24887−24892. doi: 10.1021/acsami.6b07696

    CrossRef Google Scholar

    [11] Wang C P, Chou C P, Wang P C, et al. Flexible graphene-based micro-capacitors using ultrafast laser ablation[J]. Microelectron Eng, 2019, 215: 111000. doi: 10.1016/j.mee.2019.111000

    CrossRef Google Scholar

    [12] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Sci, 2021, 2021: 9783514.

    Google Scholar

    [13] Shih C Y, Streubel R, Heberle J, et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution[J]. Nanoscale, 2018, 10(15): 6900−6910. doi: 10.1039/C7NR08614H

    CrossRef Google Scholar

    [14] Zhang D S, Wada H. Laser ablation in liquids for nanomaterial synthesis and applications[M]//Sugioka K. Handbook of Laser Micro- and Nano-Engineering. Cham: Springer, 2021: 1–35.

    Google Scholar

    [15] Zhang D S, Zhang C, Liu J, et al. Carbon-encapsulated metal/metal carbide/metal oxide core-shell nanostructures generated by laser ablation of metals in organic solvents[J]. ACS Appl Nano Mater, 2019, 2(1): 28−39. doi: 10.1021/acsanm.8b01541

    CrossRef Google Scholar

    [16] Zhang Y Y, Jiao Y L, Li C Z, et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. Int J Extrem Manuf, 2020, 2(3): 032002. doi: 10.1088/2631-7990/ab95f6

    CrossRef Google Scholar

    [17] Zhang D S, Ranjan B, Tanaka T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J]. Int J Extrem Manuf, 2020, 2(1): 015001. doi: 10.1088/2631-7990/ab729f

    CrossRef Google Scholar

    [18] Zhang D S, Wu L C, Ueki M, et al. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application[J]. Int J Extrem Manuf, 2020, 2(4): 045001. doi: 10.1088/2631-7990/abb5f3

    CrossRef Google Scholar

    [19] Zhang D S, Ranjan B, Tanaka T, et al. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces[J]. ACS Appl Nano Mater, 2020, 3(2): 1855−1871. doi: 10.1021/acsanm.9b02520

    CrossRef Google Scholar

    [20] Amendola V, Amans D, Ishikawa Y, et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles[J]. Chem Eur J, 2020, 26(42): 9206−9242. doi: 10.1002/chem.202000686

    CrossRef Google Scholar

    [21] Arakane S, Mizoshiri M, Hata S. Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction[J]. Jpn Appl Phys, 2015, 54(6S1): 06FP07. doi: 10.7567/JJAP.54.06FP07

    CrossRef Google Scholar

    [22] Mizoshiri M, Yoshidomi K. Cu patterning using femtosecond laser reductive sintering of CuO nanoparticles under inert gas injection[J]. Materials, 2021, 14(12): 3285. doi: 10.3390/ma14123285

    CrossRef Google Scholar

    [23] Bharati M S S, Soma V R. Flexible SERS substrates for hazardous materials detection: recent advances[J]. Opto-Electron Adv, 2021, 4(11): 210048. doi: 10.29026/oea.2021.210048

    CrossRef Google Scholar

    [24] Noh J, Ha J, Kim D. Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate[J]. Appl Surf Sci, 2020, 511: 145574. doi: 10.1016/j.apsusc.2020.145574

    CrossRef Google Scholar

    [25] Lamberti A, Perrucci F, Caprioli M, et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology, 2017, 28(17): 174002. doi: 10.1088/1361-6528/aa6615

    CrossRef Google Scholar

    [26] Zhang D S, Liu R J, Li Z G. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser[J]. Int J Extrem Manuf, 2022, 4(1): 015102. doi: 10.1088/2631-7990/ac376c

    CrossRef Google Scholar

    [27] Kim D, Tcho I W, Jin I K, et al. Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator[J]. Nano Energy, 2017, 35: 379−386. doi: 10.1016/j.nanoen.2017.04.013

    CrossRef Google Scholar

    [28] Zhao L L, Liu Z, Chen D, et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano-Micro Lett, 2021, 13(1): 49. doi: 10.1007/s40820-020-00577-0

    CrossRef Google Scholar

    [29] Bai S, Sugioka K. Recent advances in the fabrication of highly sensitive surface-enhanced raman scattering substrates: nanomolar to attomolar level sensing[J]. Light Adv Manuf, 2021, 2: 13.

    Google Scholar

    [30] Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electron Adv, 2019, 2(3): 190002.

    Google Scholar

    [31] Zhou R, Lin S D, Ding Y, et al. Enhancement of laser ablation via interacting spatial double-pulse effect[J]. Opto-Electron Adv, 2018, 1(8): 180014.

    Google Scholar

    [32] Zhang C Y, Zhou W, Geng D, et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures[J]. Opto-Electron Adv, 2021, 4(4): 200061.

    Google Scholar

    [33] Xie X, Zhou C, Wei X, et al. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electron Adv, 2019, 2(1): 180017.

    Google Scholar

    [34] Peng P, Li L H, He P, et al. One-step selective laser patterning of copper/graphene flexible electrodes[J]. Nanotechnology, 2019, 30(18): 185301. doi: 10.1088/1361-6528/aafe4c

    CrossRef Google Scholar

    [35] Park S, Lee H, Kim Y J, et al. Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components[J]. NPG Asia Mater, 2018, 10(10): 959−969. doi: 10.1038/s41427-018-0080-z

    CrossRef Google Scholar

    [36] Zang X N, Shen C W, Chu Y, et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Adv Mater, 2018, 30(26): 1800062. doi: 10.1002/adma.201800062

    CrossRef Google Scholar

    [37] Ba H, Sutter C, Papaefthimiou V, et al. Foldable flexible electronics based on few-layer graphene coated on paper composites[J]. Carbon, 2020, 167: 169−180. doi: 10.1016/j.carbon.2020.05.012

    CrossRef Google Scholar

    [38] Theodorakos I, Zacharatos F, Geremia R, et al. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics[J]. Appl Surf Sci, 2015, 336: 157−162. doi: 10.1016/j.apsusc.2014.10.120

    CrossRef Google Scholar

    [39] 廖嘉宁, 王欣达, 周兴汶, 等. 铜纳米颗粒的飞秒激光连接过程研究[J]. 中国激光, 2021, 48(8): 0802008. doi: 10.3788/CJL202148.0802008

    CrossRef Google Scholar

    Liao J N, Wang X D, Zhou X W, et al. Joining process of copper nanoparticles with femtosecond laser irradiation[J]. Chin J Lasers, 2021, 48(8): 0802008. doi: 10.3788/CJL202148.0802008

    CrossRef Google Scholar

    [40] An J N, Le T S D, Lim C H J, et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Adv Sc, 2018, 5(8): 1800496. doi: 10.1002/advs.201800496

    CrossRef Google Scholar

    [41] Sakka T, Saito K, Ogata Y H. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission[J]. J Appl Phys, 2005, 97(1): 014902. doi: 10.1063/1.1828214

    CrossRef Google Scholar

    [42] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chem Rev, 2017, 117(5): 3990−4103. doi: 10.1021/acs.chemrev.6b00468

    CrossRef Google Scholar

    [43] Zhang D S, Li Z G, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids[J]. J Phys Photonics, 2021, 3(4): 042002. doi: 10.1088/2515-7647/ac0bfd

    CrossRef Google Scholar

    [44] Zhang D S, Liu J, Liang C H. Perspective on how laser-ablated particles grow in liquids[J]. Sci China Phys Mechan Astron, 2017, 60(7): 074201. doi: 10.1007/s11433-017-9035-8

    CrossRef Google Scholar

    [45] Li S H, Li Y, Liu K, et al. Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells[J]. J Colloid Interface Sci, 2021, 600: 691−700. doi: 10.1016/j.jcis.2021.05.034

    CrossRef Google Scholar

    [46] Shabalina A V, Svetlichnyi V A, Kulinich S A. Green laser ablation-based synthesis of functional nanomaterials for generation, storage, and detection of hydrogen[J]. Curr Opin Green Sustain Chem, 2022, 33: 100566. doi: 10.1016/j.cogsc.2021.100566

    CrossRef Google Scholar

    [47] Charipar K, Kim H, Piqué A, et al. ZnO nanoparticle/graphene hybrid photodetectors via laser fragmentation in liquid[J]. Nanomaterials, 2020, 10(9): 1648. doi: 10.3390/nano10091648

    CrossRef Google Scholar

    [48] Jian J, Xu Y X, Yang X K, et al. Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting[J]. Nat Commun, 2019, 10(1): 2609. doi: 10.1038/s41467-019-10543-z

    CrossRef Google Scholar

    [49] Nikolov A S, Stankova N E, Karashanova D B, et al. Synergistic effect in a two-phase laser procedure for production of silver nanoparticles colloids applicable in ophthalmology[J]. Opt Laser Technol, 2021, 138: 106850. doi: 10.1016/j.optlastec.2020.106850

    CrossRef Google Scholar

    [50] Suehara K, Takai R, Ishikawa Y, et al. Reduction mechanism of transition metal oxide particles in thermally induced nanobubbles during pulsed laser melting in ethanol[J]. Chemphyschem, 2021, 22(7): 675−683. doi: 10.1002/cphc.202001000

    CrossRef Google Scholar

    [51] Zhang D S, Liu J, Li P F, et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 2017, 3(8): 512−533. doi: 10.1002/cnma.201700079

    CrossRef Google Scholar

    [52] Menéndez-Manjón A, Wagener P, Barcikowski S. Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids[J]. J Phys Chem C, 2011, 115(12): 5108−5114. doi: 10.1021/jp109370q

    CrossRef Google Scholar

    [53] Zhang S D, Gökce B, Sommer S, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol[J]. Appl Surf Sci, 2016, 367: 222−230. doi: 10.1016/j.apsusc.2016.01.071

    CrossRef Google Scholar

    [54] Tan D Z, Zhou S F, Qiu J R, et al. Preparation of functional nanomaterials with femtosecond laser ablation in solution[J]. J Photochem Photobiol C Photochem Rev, 2013, 17: 50−68. doi: 10.1016/j.jphotochemrev.2013.08.002

    CrossRef Google Scholar

    [55] Anisimov S I, Kapeliovich B L, Perel'man T L. Electron emission from metal surfaces exposed to ultra-short laser pulses[J]. Zh Eksp Teor Fiz, 1974, 66(776): 776−781.

    Google Scholar

    [56] Xiao J, Liu P, Wang C X, et al. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly[J]. Prog Mater Sc, 2017, 87: 140−220. doi: 10.1016/j.pmatsci.2017.02.004

    CrossRef Google Scholar

    [57] Qi L T, Nishii K, Yasui M, et al. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation[J]. Opt Lasers Eng, 2010, 48(10): 1000−1007. doi: 10.1016/j.optlaseng.2010.05.006

    CrossRef Google Scholar

    [58] Werner D, Hashimoto S. Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles[J]. J Phys Chem C, 2011, 115(12): 5063−5072. doi: 10.1021/jp109255g

    CrossRef Google Scholar

    [59] Lorazo P, Lewis L J, Meunier M. Short-pulse laser ablation of solids: from phase explosion to fragmentation[J]. Phys Rev Lett, 2003, 91(22): 225502. doi: 10.1103/PhysRevLett.91.225502

    CrossRef Google Scholar

    [60] Shih C Y, Wu C P, Shugaev M V, et al. Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water[J]. J Colloid Interface Sci, 2017, 489: 3−17. doi: 10.1016/j.jcis.2016.10.029

    CrossRef Google Scholar

    [61] Lasemi N, Rupprechter G, Liedl G, et al. Near-infrared femtosecond laser ablation of Au-coated Ni: effect of organic fluids and water on crater morphology, ablation efficiency and hydrodynamic properties of NiAu nanoparticles[J]. Materials, 2021, 14(19): 5544. doi: 10.3390/ma14195544

    CrossRef Google Scholar

    [62] von der Linde D, Schüler H. Breakdown threshold and plasma formation in femtosecond laser–solid interaction[J]. J Opt Soc Am B, 1996, 13(1): 216−222. doi: 10.1364/JOSAB.13.000216

    CrossRef Google Scholar

    [63] König J, Nolte S, Tünnermann A. Plasma evolution during metal ablation with ultrashort laser pulses[J]. Opt Express, 2005, 13(26): 10597−10607. doi: 10.1364/OPEX.13.010597

    CrossRef Google Scholar

    [64] Yan Z J, Chrisey D B. Pulsed laser ablation in liquid for micro-/nanostructure generation[J]. J Photochem Photobiol C Photochem Rev, 2012, 13(3): 204−223. doi: 10.1016/j.jphotochemrev.2012.04.004

    CrossRef Google Scholar

    [65] De Giacomo A, Dell'Aglio M, Santagata A, et al. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production[J]. Phys Chem Chem Phys, 2013, 15(9): 3083−3092. doi: 10.1039/C2CP42649H

    CrossRef Google Scholar

    [66] Zhang D S, Choi W, Jakobi J, et al. Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage[J]. Nanomaterials, 2018, 8(7): 529. doi: 10.3390/nano8070529

    CrossRef Google Scholar

    [67] Tan D Z, Teng Y, Liu Y, et al. Preparation of zirconia nanoparticles by pulsed laser ablation in liquid[J]. Chem Lett, 2009, 38(11): 1102−1103. doi: 10.1246/cl.2009.1102

    CrossRef Google Scholar

    [68] Amans D, Diouf M, Lam J, et al. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis[J]. J Colloid Interface Sci, 2017, 489: 114−125. doi: 10.1016/j.jcis.2016.08.017

    CrossRef Google Scholar

    [69] Dhanunjaya M, Byram C, Vendamani V S, et al. Hafnium oxide nanoparticles fabricated by femtosecond laser ablation in water[J]. Appl Phys A, 2019, 125(1): 74. doi: 10.1007/s00339-018-2366-y

    CrossRef Google Scholar

    [70] Camarda P, Vaccaro L, Sciortino A, et al. Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation[J]. Appl Surf Sci, 2020, 506: 144954. doi: 10.1016/j.apsusc.2019.144954

    CrossRef Google Scholar

    [71] Liu K W, Sakurai M, Aono M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010, 10(9): 8604−8634. doi: 10.3390/s100908604

    CrossRef Google Scholar

    [72] Mitra S, Aravindh A, Das G, et al. High-performance solar-blind flexible deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation[J]. Nano Energy, 2018, 48: 551−559. doi: 10.1016/j.nanoen.2018.03.077

    CrossRef Google Scholar

    [73] Huang Y J, Xie X Z, Li M N, et al. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles[J]. Opt Express, 2021, 29(3): 4453−4463. doi: 10.1364/OE.416772

    CrossRef Google Scholar

    [74] Lee H, Yang M Y. Effect of solvent and PVP on electrode conductivity in laser-induced reduction process[J]. Appl Phys A, 2015, 119(1): 317−323. doi: 10.1007/s00339-014-8970-6

    CrossRef Google Scholar

    [75] Mizoshiri M, Hata S. Direct writing of Cu-based micro-temperature sensors onto glass and Poly(dimethylsiloxane) substrates using femtosecond laser reductive patterning of CuO nanoparticles[J]. Res Rev J Mater Sci, 2016, 4(4): 47−54.

    Google Scholar

    [76] Mizoshiri M, Ito Y, Arakane S, et al. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning[J]. Jpn Appl Phys, 2016, 55(6S1): 06GP05. doi: 10.7567/JJAP.55.06GP05

    CrossRef Google Scholar

    [77] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013. doi: 10.3788/CJL201946.1002013

    CrossRef Google Scholar

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chin J Lasers, 2019, 46(10): 1002013. doi: 10.3788/CJL201946.1002013

    CrossRef Google Scholar

    [78] Ferreira P H D, Vivas M G, De Boni L, et al. Femtosecond laser induced synthesis of Au nanoparticles mediated by chitosan[J]. Opt Express, 2012, 20(1): 518−523. doi: 10.1364/OE.20.000518

    CrossRef Google Scholar

    [79] Barton P, Mukherjee S, Prabha J, et al. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction[J]. Nanotechnology, 2017, 28(50): 505302. doi: 10.1088/1361-6528/aa977b

    CrossRef Google Scholar

    [80] Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser direct writing of plasmonic Ag/Pd Alloy nanostructures enables flexible integration of robust SERS substrates[J]. Adv Mater Technol, 2017, 2(6): 1600270. doi: 10.1002/admt.201600270

    CrossRef Google Scholar

    [81] Soni M, Kumar P, Pandey J, et al. Scalable and site specific functionalization of reduced graphene oxide for circuit elements and flexible electronics[J]. Carbon, 2018, 128: 172−178. doi: 10.1016/j.carbon.2017.11.087

    CrossRef Google Scholar

    [82] Guan H, Meng J W, Cheng Z Y, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Appl Mater Interfaces, 2020, 12(41): 46357−46365. doi: 10.1021/acsami.0c12561

    CrossRef Google Scholar

    [83] Wan Z F, Streed E W, Lobino M, et al. Laser-reduced graphene: synthesis, properties, and applications[J]. Adv Mater Technol, 2018, 3(4): 1700315. doi: 10.1002/admt.201700315

    CrossRef Google Scholar

    [84] Low M J, Lee H, Lim C H J, et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing[J]. Appl Surf Sci, 2020, 526: 146647. doi: 10.1016/j.apsusc.2020.146647

    CrossRef Google Scholar

    [85] Dinh Le T S, An J N, Huang Y, et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors[J]. ACS Nano, 2019, 13(11): 13293−13303. doi: 10.1021/acsnano.9b06354

    CrossRef Google Scholar

    [86] An J N, Le T S D, Huang Y, et al. All-graphene-based highly flexible noncontact electronic skin[J]. ACS Appl Mater Interfaces, 2017, 9(51): 44593−44601. doi: 10.1021/acsami.7b13701

    CrossRef Google Scholar

    [87] Yuan Y J, Jiang L, Li X, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nat Commun, 2020, 11(1): 6185. doi: 10.1038/s41467-020-19985-2

    CrossRef Google Scholar

    [88] Li R Z, Peng R, Kihm K D, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy Environ Sci, 2016, 9(4): 1458−1467. doi: 10.1039/C5EE03637B

    CrossRef Google Scholar

    [89] Kim Y J, Le T S D, Nam H K, et al. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses[J]. CIRP Ann, 2021, 70(1): 443−446. doi: 10.1016/j.cirp.2021.04.031

    CrossRef Google Scholar

    [90] In J B, Hsia B, Yoo J H, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 2015, 83: 144−151. doi: 10.1016/j.carbon.2014.11.017

    CrossRef Google Scholar

    [91] Bai J R, Gao Y, Lu C, et al. Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection[J]. Measurement, 2021, 169: 108348. doi: 10.1016/j.measurement.2020.108348

    CrossRef Google Scholar

    [92] Wang S T, Yu Y C, Li R Z, et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets[J]. Electrochim Acta, 2017, 241: 153−161. doi: 10.1016/j.electacta.2017.04.138

    CrossRef Google Scholar

    [93] Cheng C, Wang S T, Wu J, et al. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17784−17792. doi: 10.1021/acsami.6b03743

    CrossRef Google Scholar

    [94] Xiao M, Zheng S, Shen D Z, et al. Laser-induced joining of nanoscale materials: processing, properties, and applications[J]. Nano Today, 2020, 35: 100959. doi: 10.1016/j.nantod.2020.100959

    CrossRef Google Scholar

    [95] Deng Y B, Bai Y F, Yu Y C, et al. Laser nanojoining of copper nanowires[J]. J Laser Appl, 2019, 31(2): 022414. doi: 10.2351/1.5096137

    CrossRef Google Scholar

    [96] Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Adv Mater, 2014, 26(33): 5808−5814. doi: 10.1002/adma.201400474

    CrossRef Google Scholar

    [97] 林路禅, 邢松龄, 霍金鹏, 等. 超快激光纳米线连接技术研究进展[J]. 中国激光, 2021, 48(8): 0802001. doi: 10.3788/CJL202148.0802001

    CrossRef Google Scholar

    Lin L C, Xing S L, Huo J P, et al. Research progress of ultrafast laser-induced nanowires joining technology[J]. Chin J Lasers, 2021, 48(8): 0802001. doi: 10.3788/CJL202148.0802001

    CrossRef Google Scholar

    [98] Ha J, Lee B J, Hwang D J, et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Adv, 2016, 6(89): 86232−86239. doi: 10.1039/C6RA19608J

    CrossRef Google Scholar

    [99] Yu Y C, Deng Y B, Al Hasan M A, et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Adv, 2020, 2(3): 1195−1205. doi: 10.1039/C9NA00740G

    CrossRef Google Scholar

    [100] Acuautla M, Bernardini S, Bendahan M, et al. Ammonia sensing properties of ZnO nanoparticles on flexible substrate[J]. Int J Smart Sens Intell Syst, 2020, 7(5): 1−4.

    Google Scholar

    [101] Schmiedt R E, Qian C, Behr C, et al. Flexible sensors on polymide fabricated by femtosecond laser for integration in fiber reinforced polymers[J]. Flex Print Electron, 2018, 3(2): 025003. doi: 10.1088/2058-8585/aabe45

    CrossRef Google Scholar

    [102] Das T, Sharma B K, Katiyar A K, et al. Graphene-based flexible and wearable electronics[J]. J Semicond, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

    CrossRef Google Scholar

    [103] Kalita G, Qi L T, Namba Y, et al. Femtosecond laser induced micropatterning of graphene film[J]. Mater Lett, 2011, 65(11): 1569−1572. doi: 10.1016/j.matlet.2011.02.057

    CrossRef Google Scholar

    [104] Ye X H, Qi M, Yang Y F, et al. Pattern directive sensing selectivity of graphene for wearable multifunctional sensors via femtosecond laser fabrication[J]. Adv Mater Technol, 2020, 5(11): 2000446. doi: 10.1002/admt.202000446

    CrossRef Google Scholar

    [105] Li Q, Wang Q Z, Li L L, et al. Femtosecond laser‐etched mxene microsupercapacitors with double‐side configuration via arbitrary on‐ and through‐substrate connections[J]. Adv Energy Mater, 2020, 10(24): 2000470. doi: 10.1002/aenm.202000470

    CrossRef Google Scholar

    [106] Wang H, Cheng J, Wang Z Z, et al. Triboelectric nanogenerators for human-health care[J]. Sci Bull, 2021, 66(5): 490−511. doi: 10.1016/j.scib.2020.10.002

    CrossRef Google Scholar

    [107] 程广贵, 张伟, 方俊, 等. 基于织构表面的摩擦静电发电机制备及其输出性能研究[J]. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201

    CrossRef Google Scholar

    Cheng G G, Zhang W, Fang J, et al. Fabrication of triboelectric nanogenerator with textured surface and its electric output performance[J]. Acta Phys Sin, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201

    CrossRef Google Scholar

    [108] Huang J, Fu X P, Liu G X, et al. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J]. Nano Energy, 2019, 62: 638−644. doi: 10.1016/j.nanoen.2019.05.081

    CrossRef Google Scholar

    [109] Xiao X Z, Lü C, Wang G, et al. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane[J]. Chem Res Chin Univ, 2015, 31(3): 434−438. doi: 10.1007/s40242-015-4432-8

    CrossRef Google Scholar

    [110] Wang S, Xie G Z, Tai H L, et al. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature[J]. Nano Energy, 2018, 51: 231−240. doi: 10.1016/j.nanoen.2018.06.041

    CrossRef Google Scholar

  • With the rapid development of information technology and the rise of consumer electronics, flexible electronic devices with high integration, miniaturization and lightweight have attracted wide research attentions. Such flexible electronic devices are typically composed of functional parts, conductive structures, and flexible substrates. The functional parts can respond to external stimuli and convert them into electrical signals. The conductive structures are used for electrical signal transmission and the flexible substrates are used to support functional and conductive structures. The preparation of flexible electronic devices requires nanomaterial synthesis, sintering, processing, and patterning, which is an intrinsically interdisciplinary subject that integrates material science, electronics science, and engineering science.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(16259) PDF downloads(4063) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint