Zhou Z R, Qiu Z J, Li K, et al. Review on demodulation methods for optic fiber Fabry-Perot sensors[J]. Opto-Electron Eng, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411
Citation: Zhou Z R, Qiu Z J, Li K, et al. Review on demodulation methods for optic fiber Fabry-Perot sensors[J]. Opto-Electron Eng, 2022, 49(6): 210411. doi: 10.12086/oee.2022.210411

Review on demodulation methods for optic fiber Fabry-Perot sensors

    Fund Project: Institute of Electrical Engineering Chinese Academy of Sciences Fund (E155440201) and Youth Innovation Promotion Association CAS (2021135)
More Information
  • Fiber optic Fabry-Perot sensors have attracted a lot of attention in many fields such as medical detection, underwater acoustic detection, and electric power monitoring due to their high sensitivity and strong anti-interference ability. The parameters of the light source, the structure of the sensing head, and the demodulation methods are the main factors that restrict the detection ability of fiber optic Fabry-Perot sensors. Demodulating the fiber optic Fabry-Perot sensors is to extract cavity length from the output optical signal which indicates the information of vibration, displacement, acceleration, temperature, and other parameters sensed by the sensor's head. An excellent demodulation method can improve the demodulation speed, resolution, and dynamic range of the fiber optic Fabry-Perot sensor. However, there are dozens of demodulation methods for the fiber optic Fabry-Perot sensor, and it is difficult to choose the appropriate demodulation method for specific application scenarios. In this paper, firstly, the characteristics of the signal output from the optical fiber Fabry-Perot sensor are reviewed. Then, the influencing factors of the common demodulation methods are described in detail, and the improvement methods proposed by domestic and foreign research institutes are also introduced. Finally, the choice principle of the demodulation is proposed from two aspects: the applicable condition and the multiplexing of the optical fiber Fabry-Perot sensor.
  • 加载中
  • [1] Al-Bassyiouni M, Yu M, Balachandran B, et al. Fiber optic sensors for active acoustics control[J]. Proc SPIE, 2002, 4693: 396−406. doi: 10.1117/12.475236

    CrossRef Google Scholar

    [2] Perez-Herrera R A, Bravo M, Leandro D, et al. Multiparameter sensor based on a multi-interferometric serial configuration for temperature and strain measurements[J]. IEEE J Sel Top Quantum Electron, 2021, 27(6): 5600704.

    Google Scholar

    [3] 张天鹏. 基于冠脉血流储备分数检测的光纤法布里-珀罗传感器研究[D]. 济南: 山东大学, 2019.

    Google Scholar

    Zhang T P. Research of fiber Fabry-Perot sensor based on coronary fractional flow reserve detection[D]. Ji’nan: Shandong University, 2019.

    Google Scholar

    [4] Uotila J. Use of the optical cantilever microphone in photoacoustic spectroscopy[D]. Turku: University of Turku, 2009.

    Google Scholar

    [5] Kilic O, Digonnet M J F, Kino G S, et al. Miniature photonic-crystal hydrophone optimized for ocean acoustics[J]. J Acoust Soc Am, 2011, 129(4): 1837−1850. doi: 10.1121/1.3543949

    CrossRef Google Scholar

    [6] Yu B, Kim D W, Deng J D, et al. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers[J]. Appl Opt, 2003, 43(16): 3241−3250.

    Google Scholar

    [7] Kilic O, Digonnet M, Kino G, et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror[J]. Meas Sci Technol, 2007, 18: 3049−3054. doi: 10.1088/0957-0233/18/10/S01

    CrossRef Google Scholar

    [8] Dong B, Han M, Sun L Q, et al. Sulfur hexafluoride-filled extrinsic Fabry-Pérot interferometric fiber-optic sensors for partial discharge detection in transformers[J]. IEEE Photonics Technol Lett, 2008, 20(18): 1566−1568. doi: 10.1109/LPT.2008.928533

    CrossRef Google Scholar

    [9] Islam R, Ali M M, Lai M H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review[J]. Sensors, 2014, 14(4): 7451−7488. doi: 10.3390/s140407451

    CrossRef Google Scholar

    [10] 江毅, 唐才杰. 光纤Fabry-Perot干涉仪原理及应用[M]. 北京: 国防工业出版社, 2009.

    Google Scholar

    Jiang Y, Tang C J. Optical Fiber Fabry-Peort Interferometer Principle and Applications[M]. Beijing: National Defense Industry Press, 2009.

    Google Scholar

    [11] Tian J J, Zhang Q, Fink T, et al. Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure[J]. Opt Lett, 2012, 37(22): 4672−4674. doi: 10.1364/OL.37.004672

    CrossRef Google Scholar

    [12] Mao X F, Zhou X L, Yu Q X. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors[J]. Opt Commun, 2016, 361: 17−20. doi: 10.1016/j.optcom.2015.10.022

    CrossRef Google Scholar

    [13] Li A, Jing Z G, Liu Y Y, et al. Quadrature operating point stabilizing technique for fiber-optic Fabry-Perot sensors using vernier-tuned distributed Bragg reflectors laser[J]. IEEE Sens J, 2021, 21(2): 2084−2091. doi: 10.1109/JSEN.2020.3017083

    CrossRef Google Scholar

    [14] Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Opt Lett, 1991, 16(4): 273−275. doi: 10.1364/OL.16.000273

    CrossRef Google Scholar

    [15] Tran T A, Miller III W V, Murphy K A, et al. Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection[J]. J Lightwave Technol, 1992, 10(10): 1499−1506. doi: 10.1109/50.166795

    CrossRef Google Scholar

    [16] 王婷婷, 王鸣, 李明, 等. 光纤法布里-珀罗腔传感器双波长解调法及波长优化设计[J]. 光学学报, 2005, 25(10): 1297−1301. doi: 10.3321/j.issn:0253-2239.2005.10.001

    CrossRef Google Scholar

    Wang T T, Wang M, Li M, et al. Dual-wavelength demodulation and wavelength optimization for optical fiber Fabry-Pérot sensor[J]. Acta Opt Sin, 2005, 25(10): 1297−1301. doi: 10.3321/j.issn:0253-2239.2005.10.001

    CrossRef Google Scholar

    [17] Dong B, Han M, Wang A B. Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors[J]. Proc SPIE, 2012, 8370: 83700K. doi: 10.1117/12.920816

    CrossRef Google Scholar

    [18] Xia J, Xiong S D, Wang F Y, et al. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors[J]. Opt Lett, 2016, 41(13): 3082−3085. doi: 10.1364/OL.41.003082

    CrossRef Google Scholar

    [19] Jia J S, Jiang Y, Zhang L C, et al. Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors[J]. IEEE Photonics Technol Lett, 2018, 30(15): 1380−1383. doi: 10.1109/LPT.2018.2848934

    CrossRef Google Scholar

    [20] Zheng J J, Li W, Liu X Y. Fast and simple interrogation of extrinsic Fabry-Perot interferometer sensor based on dual-wavelength intensity ratio[J]. Opt Commun, 2019, 439: 176−180. doi: 10.1016/j.optcom.2019.01.004

    CrossRef Google Scholar

    [21] 陈伟民, 王宁, 朱永, 等. 实际光源光谱分布对相位型光纤法-珀应变传感器的影响及其实验研究[J]. 中国激光, 2003, 30(1): 88−92. doi: 10.3321/j.issn:0258-7025.2003.01.023

    CrossRef Google Scholar

    Chen W M, Wang N, Zhu Y, et al. Experimental study on the affection of Gaussian spectrum of light source on the optical fiber F-P strain sensor[J]. Chin J Lasers, 2003, 30(1): 88−92. doi: 10.3321/j.issn:0258-7025.2003.01.023

    CrossRef Google Scholar

    [22] Xu J C. High temperature high bandwidth fiber optic pressure sensors[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2005.

    Google Scholar

    [23] Mei J W, Xiao X S, Yang C X. High-resolution and large dynamic range fiber extrinsic Fabry-Perot sensing by multi-extrema-tracing technique[J]. Appl Opt, 2015, 54(12): 3677−3681. doi: 10.1364/AO.54.003677

    CrossRef Google Scholar

    [24] 曹群, 贾平岗, 杨兵, 等. 光纤法珀压力传感器数据解调及改进算法研究[J]. 仪表技术与传感器, 2015(12): 15−18. doi: 10.3969/j.issn.1002-1841.2015.12.005

    CrossRef Google Scholar

    Cao Q, Jia P G, Yang B, et al. Study of improved algorithm about data demodulation of fiber optic F-P pressure sensing system[J]. Instrum Tech Sens, 2015(12): 15−18. doi: 10.3969/j.issn.1002-1841.2015.12.005

    CrossRef Google Scholar

    [25] 张鹏. 短腔干涉型光纤法珀压力传感器解调技术研究[D]. 南京: 南京信息工程大学, 2021.

    Google Scholar

    Zhang P. Research on demodulation technology of short-cavity interferometric fiber optic Fabry-Perot pressure sensors[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.

    Google Scholar

    [26] Jiang Y. Fourier Transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-PÉrot interferometric sensors[J]. IEEE Photonics Technol Lett, 2008, 20(2): 75−77. doi: 10.1109/LPT.2007.912567

    CrossRef Google Scholar

    [27] 雷小华 陈伟民, 章鹏, 等. 基于三次样条插值的光纤F-P传感器傅里叶变换解调研究[J]. 光子学报, 2008, 37(4): 705−708.

    Google Scholar

    Lei X H, Chen W M, Zhang P, et al. Demodulation method based on Fourier transform with cubic spline interpolation for optical fiber Fabry-Perot sensors[J]. Acta Photon Sin, 2008, 37(4): 705−708.

    Google Scholar

    [28] 戴霞娟, 王鸣, 贲玉红. 快速傅里叶变换与线性调频Z变换联合算法在光纤法布里-珀罗传感器解调中的应用[J]. 光学学报, 2008, 28(7): 1241−1246. doi: 10.3321/j.issn:0253-2239.2008.07.004

    CrossRef Google Scholar

    Dai X J, Wang M, Ben Y H. Application of FFT algorithm associated with CZT in demodulation of Fabry-Pérot pressure sensors[J]. Acta Opt Sin, 2008, 28(7): 1241−1246. doi: 10.3321/j.issn:0253-2239.2008.07.004

    CrossRef Google Scholar

    [29] Hassanieh H, Indyk P, Katabi D, et al. Simple and practical algorithm for sparse Fourier transform[C]//Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, 2012: 1183–1194.

    Google Scholar

    [30] 陶珺, 陈杨黎, 卢景琦. 基于稀疏快速傅里叶变换的光纤F-P传感器腔长解调方法[J]. 中国激光, 2018, 45(5): 0510001. doi: 10.3788/CJL201845.0510001

    CrossRef Google Scholar

    Tao J, Chen Y L, Lu J Q. Method of the cavity length demodulation for optical fiber F-P sensors based on sparse fast Fourier transform[J]. Chin J Lasers, 2018, 45(5): 0510001. doi: 10.3788/CJL201845.0510001

    CrossRef Google Scholar

    [31] 杨洋. 光纤F-P干涉传感器高分辨动态解调技术及应用研究[D]. 大连: 大连理工大学, 2021.

    Google Scholar

    Yang Y. Research on high-resolution dynamic demodulation technique for fiber-optic Fabry-Perot sensor and its application[D]. Dalian: Dalian University of Technology, 2021.

    Google Scholar

    [32] 章鹏, 朱永, 陈伟民. 光纤法布里-珀罗传感器腔长的傅里叶变换解调原理研究[J]. 光子学报, 2004, 33(12): 1449−1452.

    Google Scholar

    Zhang P, Zhu Y, Chen W M. A study on Fourier transformation demodulating theory of the gap of optical fiber Fabry-Perot sensor[J]. Acta Photon Sin, 2004, 33(12): 1449−1452.

    Google Scholar

    [33] 章鹏, 朱永, 唐晓初, 等. 基于傅里叶变换的光纤法布里-珀罗传感器解调研究[J]. 光学学报, 2005, 25(2): 186−189. doi: 10.3321/j.issn:0253-2239.2005.02.009

    CrossRef Google Scholar

    Zhang P, Zhu Y, Tang X C, et al. Demodulation of the optical fiber Fabry-Perot sensor based on Fourier transform[J]. Acta Opt Sin, 2005, 25(2): 186−189. doi: 10.3321/j.issn:0253-2239.2005.02.009

    CrossRef Google Scholar

    [34] Rao Y J, Jiang J, Zhou C X. Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification[J]. Sens Actuators A Phys, 2005, 120(2): 354−359. doi: 10.1016/j.sna.2004.12.020

    CrossRef Google Scholar

    [35] Musa S M. Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 1997.

    Google Scholar

    [36] Yang H D, Tong X L, Cui Z, et al. Demodulation algorithm for optical fiber F-P sensor[J]. Appl Opt, 2017, 56(26): 7450−7453. doi: 10.1364/AO.56.007450

    CrossRef Google Scholar

    [37] Lin Q, Chen L H, Li S, et al. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation[J]. Meas Sci Technol, 2011, 22(1): 015303. doi: 10.1088/0957-0233/22/1/015303

    CrossRef Google Scholar

    [38] Jia P G, Wang D H. Self-calibrated non-contact fibre-optic Fabry-Perot interferometric vibration displacement sensor system using laser emission frequency modulated phase generated carrier demodulation scheme[J]. Meas Sci Technol, 2012, 23(11): 115201. doi: 10.1088/0957-0233/23/11/115201

    CrossRef Google Scholar

    [39] Jun H, Wang L, Li F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. J Lightwave Technol, 2010, 28(22): 3258−3265.

    Google Scholar

    [40] Wang G Q, Xu T W, Li F. PGC demodulation technique with high stability and low harmonic distortion[J]. IEEE Photonics Technol Lett, 2012, 24(23): 2093−2096. doi: 10.1109/LPT.2012.2220129

    CrossRef Google Scholar

    [41] Yang X F, Chen Z H, Ng J H, et al. A PGC demodulation based on differential-cross-multiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability[J]. Proc SPIE, 2012, 8421: 84215J.

    Google Scholar

    [42] Zhang S, Zhang A L, Pan H G. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technol Lett, 2015, 27(17): 1888−1891. doi: 10.1109/LPT.2015.2444421

    CrossRef Google Scholar

    [43] Peng F, Hou L, Yang J, et al. An improved fixed phased demodulation method combined with phase generated carrier (PGC) and ellipse fitting algorithm[J]. Proc SPIE, 2015, 9620: 96200S.

    Google Scholar

    [44] Volkov A V, Plotnikov M Y, Mekhrengin M V, et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sens J, 2017, 17(13): 4143−4150. doi: 10.1109/JSEN.2017.2704287

    CrossRef Google Scholar

    [45] 孙韦, 于淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报, 2018, 47(8): 0806004. doi: 10.3788/gzxb20184708.0806004

    CrossRef Google Scholar

    Sun W, Yu M, Chang T Y, et al. Research and improvement based on PGC demodulation method[J]. Acta Photon Sin, 2018, 47(8): 0806004. doi: 10.3788/gzxb20184708.0806004

    CrossRef Google Scholar

    [46] Nikitenko A N, Plotnikov M Y, Volkov A V, et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors[J]. IEEE Sens J, 2018, 18(5): 1985−1992. doi: 10.1109/JSEN.2018.2792540

    CrossRef Google Scholar

    [47] Hou C B, Guo S. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors[J]. KSII Trans Internet Inf Syst, 2020, 14(7): 2891−2903.

    Google Scholar

    [48] Acharya A, Kawade N. A Fabry-Perot interferometer-based fiber optic dynamic displacement sensor with an analog in-phase/quadrature generator[J]. IEEE Sens J, 2020, 20(24): 14764−14771. doi: 10.1109/JSEN.2020.3009587

    CrossRef Google Scholar

    [49] 江毅, 贾景善, 姜澜, 等. 一种光纤激光干涉型传感器的移相解调法: 105865500A[P]. 2016-08-17.

    Google Scholar

    Jiang Y, Jia J S, Jiang L, et al. Phase shifting demodulation method of optical fiber laser interference type sensor: 105865500A[P]. 2016-08-17.

    Google Scholar

    [50] 江毅, 张树桓. 光纤激光干涉测量技术在EFPI传感器信号解调中的研究进展[J]. 激光与光电子学进展, 2021, 58(13): 1306017. doi: 10.3788/LOP202158.1306017

    CrossRef Google Scholar

    Jiang Y, Zhang S H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J]. Laser Optoelectron Prog, 2021, 58(13): 1306017. doi: 10.3788/LOP202158.1306017

    CrossRef Google Scholar

    [51] Jia J S, Jiang Y, Cui Y. Phase demodulator for the measurement of extrinsic Fabry-Perot interferometric sensors with arbitrary initial cavity length[J]. IEEE Sens J, 2020, 20(7): 3621−3626. doi: 10.1109/JSEN.2019.2961370

    CrossRef Google Scholar

    [52] Liu Q, Jing Z G, Xia Z J, et al. Fiber-optic ultrasonic sensing via quasi-continuous quadrature frequency modulation[J]. IEEE Photonics Technol Lett, 2020, 32(21): 1385−1388. doi: 10.1109/LPT.2020.3019007

    CrossRef Google Scholar

    [53] 王付印. 基于F-P干涉仪的微型化光纤水声传感关键技术研究[D]. 长沙: 国防科学技术大学, 2015.

    Google Scholar

    Wang F Y. Study on the key technology of extrinsic Fabry-Perot interferometer-based miniature fiber underwater acoustic sensing[D]. Changsha: National University of Defense Technology, 2015.

    Google Scholar

    [54] Zhang X M, Liu Y X, Bae H, et al. Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors[J]. Opt Express, 2009, 17(26): 23965−23974. doi: 10.1364/OE.17.023965

    CrossRef Google Scholar

    [55] Wang F Y, Xie J H, Hu Z L, et al. Interrogation of extrinsic Fabry-Perot sensors using path-matched differential interferometry and phase generated carrier technique[J]. J Lightwave Technol, 2015, 33(12): 2392−2397. doi: 10.1109/JLT.2014.2379943

    CrossRef Google Scholar

    [56] Cao C Y, Hu Z L, Xu P, et al. An improved PMDI-TDM structure for remotely interrogated optical fiber hydrophone arrays[J]. Proc SPIE, 2021, 11763: 1176361.

    Google Scholar

    [57] 刘彬. 基于Fabry-Perot干涉仪的微型光纤声压传感器关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Google Scholar

    Liu B. Research on key technologies of micro fiber acoustic sensor based on Fabry-Perot interferometer[D]. Harbin: Harbin Institute of Technology, 2017.

    Google Scholar

    [58] 赵艳, 王代华. 用于光纤法布里-珀罗传感器腔长互相关解调的光楔的数学模型研究[J]. 光学学报, 2011, 31(1): 0106007. doi: 10.3788/AOS201131.0106007

    CrossRef Google Scholar

    Zhao Y, Wang D H. Mathematical model of optical wedges for cross-correlation demodulation of cavity length of optical fiber Fabry-Pérot sensors[J]. Acta Opt Sin, 2011, 31(1): 0106007. doi: 10.3788/AOS201131.0106007

    CrossRef Google Scholar

    [59] 江俊峰, 邹盛亮, 王双, 等. 空间扫描型光纤法布里-珀罗传感解调中信噪比的影响研究[J]. 光学学报, 2015, 35(11): 1106003. doi: 10.3788/AOS201535.1106003

    CrossRef Google Scholar

    Jiang J F, Zou S L, Wang S, et al. Research on signal-to-noise ratio effect in spatial scanning optical fiber Fabry-Perot sensing demodulation system[J]. Acta Opt Sin, 2015, 35(11): 1106003. doi: 10.3788/AOS201535.1106003

    CrossRef Google Scholar

    [60] Yu Z H, Tian Z P, Wang A B. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers[J]. Opt Lett, 2017, 42(4): 727−730. doi: 10.1364/OL.42.000727

    CrossRef Google Scholar

    [61] 陈珂, 郭珉, 王泽霖, 等. 基于光学相关的光纤法布里-珀罗传感器解调仪[J]. 光子学报, 2018, 47(6): 0606001. doi: 10.3788/gzxb20184706.0606001

    CrossRef Google Scholar

    Chen K, Guo M, Wang Z L, et al. Optical correlation based demodulator for fiber-optic Fabry-Perot sensor[J]. Acta Photon Sin, 2018, 47(6): 0606001. doi: 10.3788/gzxb20184706.0606001

    CrossRef Google Scholar

    [62] 张瑶, 王可宁, 陈海滨, 等. 复合式光纤法布里-珀罗传感器非扫描相关解调系统[J]. 激光与光电子学进展, 2019, 56(13): 130603. doi: 10.3788/LOP56.130603

    CrossRef Google Scholar

    Zhang Y, Wang K N, Chen H B, et al. Non-scanning correlation demodulation system for compound optical fiber Fabry-Perot sensors[J]. Laser Optoelectron Prog, 2019, 56(13): 130603. doi: 10.3788/LOP56.130603

    CrossRef Google Scholar

    [63] Wang S, Liu T G, Jiang J F, et al. Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry[J]. Opt Lett, 2014, 39(7): 1827−1830. doi: 10.1364/OL.39.001827

    CrossRef Google Scholar

    [64] Liu T G, Zhang C, Wang S, et al. Simultaneous measurement of pressure and temperature based on adjustable line scanning polarized low-coherence interferometry with compensation plate[J]. IEEE Photonics J, 2018, 10(4): 7104109.

    Google Scholar

    [65] Yu L, Lang J J, Pan Y, et al. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor[J]. Proc SPIE, 2013, 9044: 90441A.

    Google Scholar

    [66] Si W R, Yao W Q, Guan H, et al. Numerical study of vibration characteristics for sensor membrane in transformer oil[J]. Energies, 2021, 14(6): 1662. doi: 10.3390/en14061662

    CrossRef Google Scholar

    [67] 张伟超, 赵洪, 楚雄. 基于非本征光纤法布里-珀罗干涉仪的局放声发射传感器设计[J]. 光学学报, 2015, 35(4): 0406002. doi: 10.3788/AOS201535.0406002

    CrossRef Google Scholar

    Zhang W C, Zhao H, Chu X. Partial discharge acoustic emission sensor design based on extrinsic fiber Fabry-Perot interferometer[J]. Acta Opt Sin, 2015, 35(4): 0406002. doi: 10.3788/AOS201535.0406002

    CrossRef Google Scholar

    [68] 张知先, 雷嘉丽, 陈伟根, 等. 基于多参量光纤F-P传感的变压器局部放电与油温传感方法[J]. 高电压技术, 2022, 48(1): 58−65.

    Google Scholar

    Zhang Z X, Lei J L, Chen W G, et al. Transformer's partial discharge and oil temperature sensing method based on multi-parameter fiber optic F-P sensing[J]. High Voltage Eng, 2022, 48(1): 58−65.

    Google Scholar

    [69] 曾祥楷, 饶云江, 余般梅, 等. 光纤应变、温度、振动同时测量新技术的研究[J]. 光子学报, 2001, 30(10): 1254−1258.

    Google Scholar

    Zeng X K, Rao Y J, Yu B M, et al. Simultaneous static-strain, temperature and vibration measurement using a single fibre-optic sensor[J]. Acta Photon Sin, 2001, 30(10): 1254−1258.

    Google Scholar

    [70] 王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506.

    Google Scholar

    Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506.

    Google Scholar

    [71] Jia J S, Jiang Y, Huang J B, et al. Symmetrical demodulation method for the phase recovery of extrinsic Fabry-Perot interferometric sensors[J]. Opt Express, 2020, 28(7): 9149−9157. doi: 10.1364/OE.389501

    CrossRef Google Scholar

    [72] 王晶, 张子豪, 余鑫宇, 等. 法布里-珀罗干涉信号的小波变换相位补偿算法[J]. 光子学报, 2021, 50(7): 0706003.

    Google Scholar

    Wang J, Zhang Z H, Yu X Y, et al. Phase compensation algorithm of wavelet transform for Fabry-Perot interference signals[J]. Acta Photon Sin, 2021, 50(7): 0706003.

    Google Scholar

    [73] Liu W, Yang T Y, Shi Y J, et al. White light interference demodulation of optical fiber Fabry-Perot micro-pressure sensors based on the Karhunen-Loeve transform and singular value decomposition[J]. Opt Express, 2022, 30(4): 5618−5633. doi: 10.1364/OE.450548

    CrossRef Google Scholar

    [74] 陆海松, 章鹏, 陈伟民, 等. 光纤法珀应变传感器串并联混合复用的离散腔长变换解调研究[J]. 光子学报, 2007, 36(5): 842−846.

    Google Scholar

    Lu H S, Zhang P, Chen W M, et al. Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform[J]. Acta Photon Sin, 2007, 36(5): 842−846.

    Google Scholar

    [75] Liu T, Wu M, Rao Y, et al. A multiplexed optical fibre-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites[J]. Smart Mater Struct, 1998, 7(4): 550−556. doi: 10.1088/0964-1726/7/4/016

    CrossRef Google Scholar

    [76] Liu T, Fernando G F. A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements[J]. Rev Sci Instrum, 2000, 71(3): 1275−1278. doi: 10.1063/1.1150453

    CrossRef Google Scholar

    [77] 倪小琦. 光纤MEMS法布里-珀罗压力传感器的解调和复用[D]. 南京: 南京师范大学, 2007.

    Google Scholar

    Ni X Q. Demodulation and multiplexing of fiber-optic MEMS Fabry-Perot Pressure Sensors[D]. Nanjing: Nanjing Normal University, 2007.

    Google Scholar

    [78] Wang Z, Shen F B, Song L J, et al. Multiplexed fiber Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings[J]. IEEE Photonics Technol Lett, 2007, 19(8): 622−624. doi: 10.1109/LPT.2007.894361

    CrossRef Google Scholar

    [79] 夏振杰. 可调谐激光器相移干涉术及其在多点光纤Fabry-Perot声波传感检测中的应用[D]. 大连: 大连理工大学, 2021.

    Google Scholar

    Xia Z J. Tunable laser-based phase-shifting interferometry and its application in multi-point fiber-optic Fabry–Perot acoustic wave sensing and detection[D]. Dalian: Dalian University of Technology, 2021.

    Google Scholar

    [80] Jones M E, Grace J L, Greene J A, et al. Multiplexed absolute strain measurements using extrinsic Fabry-Perot interferometers[J]. Proc SPIE, 1995, 2444: 267−275. doi: 10.1117/12.207682

    CrossRef Google Scholar

    [81] Chang C C, Sirkis J. Multiplexed optical fiber sensors using a single Fabry-Perot resonator for phase modulation[J]. J Lightwave Technol, 1996, 14(7): 1653−1663. doi: 10.1109/50.507941

    CrossRef Google Scholar

    [82] Li Z Q, Wang Z B. Study on a distributing Fabry-Perot measurement system[J]. Proc SPIE, 2002, 4927: 271−275. doi: 10.1117/12.471199

    CrossRef Google Scholar

    [83] 段雅楠, 王双, 江俊峰, 等. 光纤法珀传感解调方法研究进展[J]. 应用科学学报, 2021, 39(5): 793−808. doi: 10.3969/j.issn.0255-8297.2021.05.006

    CrossRef Google Scholar

    Duan Y N, Wang S, Jiang J F, et al. Research progress on demodulation methods of optical fiber Fabry-Perot sensor[J]. J Appl Sci-Electron Inform Eng, 2021, 39(5): 793−808. doi: 10.3969/j.issn.0255-8297.2021.05.006

    CrossRef Google Scholar

  • With the development of optical fiber sensing technology and the increase of application requirements, the Fabry-Perot sensors are developing towards the direction of high precision, and high resolution, and are more suitable for extreme harsh environments. The demodulation method affects the performance of the Fabry-Perot sensors to a great extent. However, there are dozens of demodulation methods for the fiber optic Fabry-Perot sensors, and it is often difficult to choose the appropriate demodulation method for specific application scenarios.

    Therefore, we analyzed the characteristics of the output signal of the fiber optic Fabry-Perot sensors. Meanwhile, we discussed the principle of nine main demodulation methods of the fiber optic F-P sensors and their influencing factors, such as the working point control method, the spectral peak tracing method, and the phase generated carrier method. Finally, we reviewed the improvement methods proposed by researchers at home and abroad.

    We concluded that the intensity demodulation methods are susceptible to the influence of light sources, so these methods need to be improved from the aspects of reducing the disturbance of light sources. The amount of calculation of the wavelength demodulation and the phase demodulation methods is often large, so these methods can be improved by improving the demodulation speed, improving the spectral line resolution and other aspects. In addition, many classical methods such as the working point control method, the bimodal tracking method, and so on cannot fully meet the application requirements. New demodulation methods or improved demodulation methods, such as the phase-shifting demodulation method, the non-scanning cross-correlation method, and so on, have the value of continuous research and broad application prospects.

    The choice of demodulation method needs to give priority to matching the demodulation method and the head of Fabry-Perot sensors. Demodulation will be difficult or even impossible when the method and the sensor head are unmatching. Then the demodulation methods are selected according to the requirements of sensitivity, resolution, dynamic range, demodulation speed, and other performance in different application scenarios. When it comes to the large-scale application of Fabry-Perot sensors, reuse technology is needed. How to reduce the complexity of the output signal, reduce the crosstalk between signals and reduce the difficulty of demodulation are the difficulty of Fabry-Perot sensors multiplexing. The PMDI demodulation method, non-scanning cross-correlation method, and other demodulation methods with intrinsic multiplexing ability are helpful to the multiplexing of the Fabry-Perot sensors and can be selected preferentially.

    In the end, the demodulation method of Fabry-Perot sensors ultimately serves for practical application. The complex environment in engineering applications affects the performance of the Fabry-Perot sensors. So, the research on the demodulation method should not be limited to the laboratory environment. Developing a demodulation method with engineering application value is vital.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint