Ding Z X, Chen Y, Xu F. Optical microfiber resonator: principle and applications[J]. Opto-Electron Eng, 2022, 49(8): 220006. doi: 10.12086/oee.2022.220006
Citation: Ding Z X, Chen Y, Xu F. Optical microfiber resonator: principle and applications[J]. Opto-Electron Eng, 2022, 49(8): 220006. doi: 10.12086/oee.2022.220006

Optical microfiber resonator: principle and applications

    Fund Project: National Natural Science Foundation of China (62135007)
More Information
  • Microfibers tapered from conventional optical fibers with diameters ranging from hundreds of nanometers to several micrometers possess various advantages including large evanescent field, strong light confinement, high optical nonlinearity, flexible configurability, and low-loss connection to other fiberized systems, which makes it an open platform for miniaturization and integration of all-fiber devices. As a fundamental opto-electronic component, optical resonators have got comprehensively researched and widely applied in the fields of optical communication, sensing, signal processing, and quantum photonics. Traditional optical resonators are fabricated through lithography which is relatively complicated. With the maturation of microfiber fabrication methods, optical resonator based on optical microfibers was demonstrated and developed. As an optical coupling device based on evanescent field coupling, the microfiber resonator features in low insertion loss, high finesse, easy fabrication, and compatibility with fiber systems. It can be utilized in domains of filter, sensor, modulator, and fiber laser. In this article, we summarize the recent progress in the microfiber resonators research fields, covering fundamental characteristics, fabrication methods, and applications of microfiber resonators.
  • 加载中
  • [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proc Inst Electr Eng, 1966, 113(7): 1151−1158. doi: 10.1049/piee.1966.0189

    CrossRef Google Scholar

    [2] Agrawal G P. Fiber-Optic Communication Systems[M]. 4th ed. Hoboken: Wiley, 2010.

    Google Scholar

    [3] Agrawal G P. Applications of Nonlinear Fiber Optics[M]. San Diego: Academic Press, 2001.

    Google Scholar

    [4] Yamane M, Asahara Y. Glasses for Photonics[M]. Cambridge: Cambridge University Press, 2000.

    Google Scholar

    [5] Tong L, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816−819. doi: 10.1038/nature02193

    CrossRef Google Scholar

    [6] Leon-Saval S G, Birks T A, Wadsworth W J, et al. Supercontinuum generation in submicron fibre waveguides[J]. Opt Express, 2004, 12(13): 2864−2869. doi: 10.1364/OPEX.12.002864

    CrossRef Google Scholar

    [7] Birks T A, Kakarantzas G, Russell P S J. All-fibre devices based on tapered fibres[C]//Proceedings of the Optical Fiber Communication Conference, Los Angeles, 2004: Thk2.

    Google Scholar

    [8] Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer[J]. Opt Express, 2004, 12(15): 3521−3531. doi: 10.1364/OPEX.12.003521

    CrossRef Google Scholar

    [9] Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers[J]. Opt Express, 2004, 12(10): 2258−2263. doi: 10.1364/OPEX.12.002258

    CrossRef Google Scholar

    [10] Brambilla G, Xu F, Horak P, et al. Optical fiber nanowires and microwires: fabrication and applications[J]. Adv Opt Photon, 2009, 1(1): 107−161. doi: 10.1364/AOP.1.000107

    CrossRef Google Scholar

    [11] Brambilla G. Optical fibre nanowires and microwires: a review[J]. J Opt, 2010, 12(4): 043001. doi: 10.1088/2040-8978/12/4/043001

    CrossRef Google Scholar

    [12] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676. doi: 10.1126/science.aay3676

    CrossRef Google Scholar

    [13] Strekalov D V, Yu N. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump[J]. Phys Rev A, 2009, 79(4): 041805. doi: 10.1103/PhysRevA.79.041805

    CrossRef Google Scholar

    [14] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 2016, 354(6312): 600−603. doi: 10.1126/science.aah6516

    CrossRef Google Scholar

    [15] Savchenkov A A, Matsko A B, Ilchenko V S, et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator[J]. Phys Rev Lett, 2008, 101(9): 093902. doi: 10.1103/PhysRevLett.101.093902

    CrossRef Google Scholar

    [16] Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects[J]. Nat Photonics, 2010, 4(1): 37−40. doi: 10.1038/nphoton.2009.259

    CrossRef Google Scholar

    [17] Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: a novel generation of optical sources[J]. Phys Rep, 2018, 729: 1−81. doi: 10.1016/j.physrep.2017.08.004

    CrossRef Google Scholar

    [18] Caspar C, Bachus E J. Fibre-optic micro-ring-resonator with 2 mm diameter[J]. Electron Lett, 1989, 25(22): 1506−1508. doi: 10.1049/el:19891011

    CrossRef Google Scholar

    [19] Jiang X S, Chen Y, Vienne G, et al. All-fiber add–drop filters based on microfiber knot resonators[J]. Opt Lett, 2007, 32(12): 1710−1712. doi: 10.1364/OL.32.001710

    CrossRef Google Scholar

    [20] Sumetsky M, Dulashko Y, Fini J M, et al. Optical microfiber loop resonator[J]. Appl Phys Lett, 2005, 86(16): 161108. doi: 10.1063/1.1906317

    CrossRef Google Scholar

    [21] Xu F, Brambilla G. Embedding optical microfiber coil resonators in Teflon[J]. Opt Lett, 2007, 32(15): 2164−2166. doi: 10.1364/OL.32.002164

    CrossRef Google Scholar

    [22] Sumetsky M. Optical fiber microcoil resonator[J]. Opt Express, 2004, 12(10): 2303−2316. doi: 10.1364/OPEX.12.002303

    CrossRef Google Scholar

    [23] Xu F, Horak P, Brambilla G. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator[J]. Appl Opt, 2007, 46(4): 570−573. doi: 10.1364/AO.46.000570

    CrossRef Google Scholar

    [24] Xu F, Horak P, Brambilla G. Optimized design of microcoil resonators[J]. J Lightwave Technol, 2007, 25(6): 1561−1567. doi: 10.1109/JLT.2007.895546

    CrossRef Google Scholar

    [25] Xu F. Optical fibre nanowire devices[D]. Southampton: University of Southampton, 2008.

    Google Scholar

    [26] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Opt Express, 2004, 12(6): 1025−1035. doi: 10.1364/OPEX.12.001025

    CrossRef Google Scholar

    [27] Okamoto K. Fundamentals of Optical Waveguides[M]. 2nd ed. San Diego: Academic Press, 2006.

    Google Scholar

    [28] Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview[J]. J Lightwave Technol, 2004, 22(5): 1380−1394. doi: 10.1109/JLT.2004.827666

    CrossRef Google Scholar

    [29] Vienne G, Li Y H, Tong L M. Effect of host polymer on microfiber resonator[J]. IEEE Photon Technol Lett, 2007, 19(18): 1386−1388. doi: 10.1109/LPT.2007.903340

    CrossRef Google Scholar

    [30] Jung Y, Murugan G S, Brambilla G, et al. Embedded optical microfiber coil resonator with enhanced high-Q[J]. IEEE Photon Technol Lett, 2010, 22(22): 1638−1640. doi: 10.1109/LPT.2010.2076332

    CrossRef Google Scholar

    [31] Hsieh Y C, Peng T S, Wang L A. Millimeter-sized microfiber coil resonators with enhanced quality factors by increasing coil numbers[J]. IEEE Photon Technol Lett, 2012, 24(7): 569−571. doi: 10.1109/LPT.2012.2183673

    CrossRef Google Scholar

    [32] Kou J L, Chen J H, Chen Y, et al. Platform for enhanced light–graphene interaction length and miniaturizing fiber stereo devices[J]. Optica, 2014, 1(5): 305−310. doi: 10.1364/OPTICA.1.000307

    CrossRef Google Scholar

    [33] Li J H, Chen J H, Yan S C, et al. Versatile hybrid plasmonic microfiber knot resonator[J]. Opt Lett, 2017, 42(17): 3395−3398. doi: 10.1364/OL.42.003395

    CrossRef Google Scholar

    [34] Jiang X S, Yang Q, Vienne G, et al. Demonstration of microfiber knot laser[J]. Appl Phys Lett, 2006, 89(14): 143513. doi: 10.1063/1.2359439

    CrossRef Google Scholar

    [35] Sumetsky M, Dulashko Y, Fishteyn M. Demonstration of a multi-turn microfiber coil resonator[C]//Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, 2007: PDP46.

    Google Scholar

    [36] Xu F, Brambilla G. Manufacture of 3-D microfiber coil resonators[J]. IEEE Photon Technol Lett, 2007, 19(19): 1481−1483. doi: 10.1109/LPT.2007.903762

    CrossRef Google Scholar

    [37] Xiao L M, Birks T A. High finesse microfiber knot resonators made from double-ended tapered fibers[J]. Opt Lett, 2011, 36(7): 1098−1100. doi: 10.1364/OL.36.001098

    CrossRef Google Scholar

    [38] Chen J H, Chen Y, Chen W, et al. Multifunctional optical nanofiber polarization devices with 3D geometry[J]. Opt Express, 2014, 22(15): 17890−17896. doi: 10.1364/OE.22.017890

    CrossRef Google Scholar

    [39] De Freitas J M, Birks T A, Rollings M. Optical micro-knot resonator hydrophone[J]. Opt Express, 2015, 23(5): 5850−5860. doi: 10.1364/OE.23.005850

    CrossRef Google Scholar

    [40] Ding Z X, Huang Z N, Chen Y, et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator[J]. Adv Photonics, 2020, 2(2): 026002. doi: 10.1117/1.AP.2.2.026002

    CrossRef Google Scholar

    [41] Tong L M, Hu L L, Zhang J J, et al. Photonic nanowires directly drawn from bulk glasses[J]. Opt Express, 2006, 14(1): 82−87. doi: 10.1364/OPEX.14.000082

    CrossRef Google Scholar

    [42] Birks T A, Li Y W. The shape of fiber tapers[J]. J Lightwave Technol, 1992, 10(4): 432−438. doi: 10.1109/50.134196

    CrossRef Google Scholar

    [43] Knight J C, Cheung G, Jacques F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper[J]. Opt Lett, 1997, 22(15): 1129−1131. doi: 10.1364/OL.22.001129

    CrossRef Google Scholar

    [44] Brambilla G, Xu F, Feng X. Fabrication of optical fibre nanowires and their optical and mechanical characterisation[J]. Electron Lett, 2006, 42(9): 517−519. doi: 10.1049/el:20060611

    CrossRef Google Scholar

    [45] Sumetsky M, Dulashko Y, Fini J M, et al. The microfiber loop resonator: theory, experiment, and application[J]. J Lightwave Technol, 2006, 24(1): 242−250. doi: 10.1109/JLT.2005.861127

    CrossRef Google Scholar

    [46] Jiang X S, Song Q H, Xu L, et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain[J]. Appl Phys Lett, 2007, 90(23): 233501. doi: 10.1063/1.2746935

    CrossRef Google Scholar

    [47] Chen Y, Xu F, Lu Y Q. Teflon-coated microfiber resonator with weak temperature dependence[J]. Opt Express, 2011, 19(23): 22923−22928. doi: 10.1364/OE.19.022923

    CrossRef Google Scholar

    [48] Gomes A D, Frazão O. Microfiber knot resonators as sensors: a review[C]//Proceedings of the 5th International Conference on Photonics, Porto, 2017: 356–364.

    Google Scholar

    [49] Shi L, Xu Y H, Tan W, et al. Simulation of optical microfiber loop resonators for ambient refractive index sensing[J]. Sensors, 2007, 7(5): 689−696. doi: 10.3390/s7050689

    CrossRef Google Scholar

    [50] Xu F, Pruneri V, Finazzi V, et al. An embedded optical nanowire loop resonator refractometric sensor[J]. Opt Express, 2008, 16(2): 1062−1067. doi: 10.1364/OE.16.001062

    CrossRef Google Scholar

    [51] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[J]. Appl Phys Lett, 2008, 92(10): 101126. doi: 10.1063/1.2898211

    CrossRef Google Scholar

    [52] Guo X, Tong L M. Supported microfiber loops for optical sensing[J]. Opt Express, 2008, 16(19): 14429−14434. doi: 10.1364/OE.16.014429

    CrossRef Google Scholar

    [53] Wang S S, Wang J, Li G X, et al. Modeling optical microfiber loops for seawater sensing[J]. Appl Opt, 2012, 51(15): 3017−3023. doi: 10.1364/AO.51.003017

    CrossRef Google Scholar

    [54] Chiama Y S, Limb K S, Harun S W, et al. Conducting polymer coated optical microfiber sensor for alcohol detection[J]. Sens Actuators A Phys, 2014, 205: 58−62. doi: 10.1016/j.sna.2013.10.025

    CrossRef Google Scholar

    [55] Yu H Q, Xiong L B, Chen Z H, et al. Solution concentration and refractive index sensing based on polymer microfiber knot resonator[J]. Appl Phys Express, 2014, 7(2): 022501. doi: 10.7567/APEX.7.022501

    CrossRef Google Scholar

    [56] Liao Y P, Wang J, Yang H J, et al. Salinity sensing based on microfiber knot resonator[J]. Sens Actuators A Phys, 2015, 233: 22−25. doi: 10.1016/j.sna.2015.06.019

    CrossRef Google Scholar

    [57] Wu W, Zhang T H, Rao Y J, et al. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators[J]. Sens Actuators B Chem, 2011, 155(1): 258−263. doi: 10.1016/j.snb.2010.12.030

    CrossRef Google Scholar

    [58] Zheng Y Z, Dong X Y, Zhao C L, et al. Relative humidity sensor based on microfiber loop resonator[J]. Adv Mater Sci Eng, 2013, 2013: 815930.

    Google Scholar

    [59] Tian Q, Yang H Z, Rong Q Z, et al. Highly sensitive micro-hygrometer based on microfiber knot resonator[J]. Opt Commun, 2019, 431: 88−92. doi: 10.1016/j.optcom.2018.08.062

    CrossRef Google Scholar

    [60] Le A D D, Han Y G. Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber[J]. J Lightwave Technol, 2018, 36(4): 904−909. doi: 10.1109/JLT.2017.2756639

    CrossRef Google Scholar

    [61] Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nat Photonics, 2008, 2(8): 496−500. doi: 10.1038/nphoton.2008.131

    CrossRef Google Scholar

    [62] Yu C B, Wu Y, Liu X L, et al. Graphene oxide deposited microfiber knot resonator for gas sensing[J]. Opt Mater Express, 2016, 6(3): 727−733. doi: 10.1364/OME.6.000727

    CrossRef Google Scholar

    [63] Yin Y, Li S, Wang S B, et al. Ultra-high-resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator[J]. Photonics Res, 2019, 7(6): 622−629. doi: 10.1364/PRJ.7.000622

    CrossRef Google Scholar

    [64] Wu Y, Rao Y J, Chen Y H, et al. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators[J]. Opt Express, 2009, 17(20): 18142−18147. doi: 10.1364/OE.17.018142

    CrossRef Google Scholar

    [65] Zeng X, Wu Y, Hou C L, et al. A temperature sensor based on optical microfiber knot resonator[J]. Opt Commun, 2009, 282(18): 3817−3819. doi: 10.1016/j.optcom.2009.05.079

    CrossRef Google Scholar

    [66] Harun S W, Lim K S, Damanhuri S S A, et al. Microfiber loop resonator based temperature sensor[J]. J Eur Opt Soc Rapid Publ, 2011, 6: 11026. doi: 10.2971/jeos.2011.11026

    CrossRef Google Scholar

    [67] Lim K S, Harun S W, Damanhuri S S A, et al. Current sensor based on microfiber knot resonator[J]. Sens Actuators A Phys, 2011, 167(1): 60−62. doi: 10.1016/j.sna.2011.02.036

    CrossRef Google Scholar

    [68] Xie X D, Li J, Sun L P, et al. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils[J]. Sensors, 2014, 14(5): 8423−8429. doi: 10.3390/s140508423

    CrossRef Google Scholar

    [69] Yan S C, Zheng B C, Chen J H, et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Appl Phys Lett, 2015, 107(5): 053502. doi: 10.1063/1.4928247

    CrossRef Google Scholar

    [70] Tarjányi N, Turek I, Martinček I. Effect of mechanical stress on optical properties of polydimethylsiloxane II – Birefringence[J]. Opt Mater, 2014, 37: 798−803. doi: 10.1016/j.optmat.2014.09.010

    CrossRef Google Scholar

    [71] Li J H, Chen J H, Xu F. Sensitive and wearable optical microfiber sensor for human health monitoring[J]. Adv Mater Technol, 2018, 3(12): 1800296. doi: 10.1002/admt.201800296

    CrossRef Google Scholar

    [72] Xu F, Brambilla G, Lu Y Q. A microfluidic refractometric sensor based on gratings in optical fibre microwires[J]. Opt Express, 2009, 17(23): 20866−20871. doi: 10.1364/OE.17.020866

    CrossRef Google Scholar

    [73] Wu Y, Zeng X, Rao Y J, et al. MOEMS accelerometer based on microfiber knot resonator[C]//Proceedings of SPIE 7503, 20th International Conference on Optical Fibre Sensors, Edinburgh, 2009: 75036U.

    Google Scholar

    [74] Li X L, Ding H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid[J]. Opt Lett, 2012, 37(24): 5187−5189. doi: 10.1364/OL.37.005187

    CrossRef Google Scholar

    [75] Wu Y, Zeng X, Hou C L, et al. A tunable all-fiber filter based on microfiber loop resonator[J]. Appl Phys Lett, 2008, 92(19): 191112. doi: 10.1063/1.2926672

    CrossRef Google Scholar

    [76] Arjmand M, Ahmadi V, Karimi M. Wavelength-selective optical amplifier based on microfiber coil resonators[J]. J Lightwave Technol, 2012, 30(16): 2596−2602. doi: 10.1109/JLT.2012.2202309

    CrossRef Google Scholar

    [77] Zhang Y, Xu E M, Huang D X, et al. All-optical format conversion from RZ to NRZ utilizing microfiber resonator[J]. IEEE Photonics Technol Lett, 2009, 21(17): 1202−1204. doi: 10.1109/LPT.2009.2024215

    CrossRef Google Scholar

    [78] Yu J H, Jin S S, Wei Q S, et al. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber[J]. Sci Rep, 2015, 5: 7710. doi: 10.1038/srep07710

    CrossRef Google Scholar

    [79] Zhou S X, Wang Y, He D H, et al. Add-drop filter based on wavelength-dependent light interlink between lithium-niobate microwaveguide chip and microfiber knot ring[J]. Crystals, 2016, 6(6): 67. doi: 10.3390/cryst6060067

    CrossRef Google Scholar

    [80] Xie Y, Cai D W, Wu H, et al. Mid-infrared chalcogenide microfiber knot resonators[J]. Photonics Res, 2020, 8(4): 616−621. doi: 10.1364/PRJ.386395

    CrossRef Google Scholar

    [81] Chen J H, Zheng B C, Shao G H, et al. An all-optical modulator based on a stereo graphene–microfiber structure[J]. Light Sci Appl, 2015, 4(12): e360. doi: 10.1038/lsa.2015.133

    CrossRef Google Scholar

    [82] Meng Y H, Deng L, Liu Z L, et al. All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure[J]. Opt Express, 2017, 25(15): 18451−18461. doi: 10.1364/OE.25.018451

    CrossRef Google Scholar

    [83] Chen G W, Zhang Z J, Wang X L, et al. Highly sensitive all-optical control of light in WS2 coated microfiber knot resonator[J]. Opt Express, 2018, 26(21): 27650−27658. doi: 10.1364/OE.26.027650

    CrossRef Google Scholar

    [84] Sumetsky M. Optical microfiber coil delay line[J]. Opt Express, 2009, 17(9): 7196−7205. doi: 10.1364/OE.17.007196

    CrossRef Google Scholar

    [85] Chen Z, Hsiao V K S, Li X Q, et al. Optically tunable microfiber-knot resonator[J]. Opt Express, 2011, 19(15): 14217−14222. doi: 10.1364/OE.19.014217

    CrossRef Google Scholar

    [86] Lu H H, Tao J, Chen L, et al. All-optical tuning of micro-resonator overlaid with MoTe2 nanosheets[J]. J Lightwave Technol, 2019, 37(14): 3637−3646. doi: 10.1109/JLT.2019.2918582

    CrossRef Google Scholar

    [87] Wu Q, Huang W C, Wang Y Z, et al. All-optical control of microfiber knot resonator based on 2D Ti2CTx MXene[J]. Adv Opt Mater, 2020, 8(7): 1900977. doi: 10.1002/adom.201900977

    CrossRef Google Scholar

    [88] Wang Y Z, Wu Q, Wang H D, et al. Thermally tunable microfiber knot resonator with flexible graphene heater[J]. Chin Opt Lett, 2021, 19(5): 051301. doi: 10.3788/COL202119.051301

    CrossRef Google Scholar

    [89] Gouveia M A, Lee T, Ismaeel R, et al. Second harmonic generation and enhancement in microfibers and loop resonators[J]. Appl Phys Lett, 2013, 102(20): 201120. doi: 10.1063/1.4807767

    CrossRef Google Scholar

    [90] Ismaeel R, Lee T, Ding M, et al. Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation[J]. Opt Lett, 2012, 37(24): 5121−5123. doi: 10.1364/OL.37.005121

    CrossRef Google Scholar

    [91] Lee T, Broderick N G R, Brambilla G. Resonantly enhanced third harmonic generation in microfiber loop resonators[J]. J Opt Soc Am B, 2013, 30(3): 505−511. doi: 10.1364/JOSAB.30.000505

    CrossRef Google Scholar

    [92] Ismaeel R, Lee T, Ding M, et al. Optical microfiber passive components[J]. Laser Photonics Rev, 2013, 7(3): 350−384. doi: 10.1002/lpor.201200024

    CrossRef Google Scholar

    [93] Sulaiman A, Harun S W, Ahmad F, et al. Electrically tunable microfiber knot resonator based erbium-doped fiber laser[J]. IEEE J Quantum Electron, 2012, 48(4): 443−446. doi: 10.1109/JQE.2012.2184525

    CrossRef Google Scholar

    [94] Fan W, Gan J L, Zhang Z S, et al. Narrow linewidth single frequency microfiber laser[J]. Opt Lett, 2012, 37(20): 4323−4325. doi: 10.1364/OL.37.004323

    CrossRef Google Scholar

    [95] Li Y, Xu Z L, Sun Q Z, et al. A single longitudinal mode fiber ring laser based on cascaded microfiber knots filter[C]//Proceedings of the Conference on Lasers and Electro-Optics, San Jose, 2016: SM2P. 8.

    Google Scholar

    [96] Yang A, Wang T, Zheng J Q, et al. A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator[J]. Laser Phys Lett, 2019, 16(2): 025104. doi: 10.1088/1612-202X/aaf69f

    CrossRef Google Scholar

    [97] Liu M, Liu H, Zheng X W, et al. Demonstration of multiwavelength erbium-doped fiber laser based on a microfiber knot resonator[J]. IEEE Photonics Technol Lett, 2014, 26(14): 1387−1390. doi: 10.1109/LPT.2014.2324618

    CrossRef Google Scholar

    [98] Xu Y P, Ren L Y, Ma C J, et al. Stable and uniform multiwavelength erbium-doped fiber laser based on a microfiber knot resonator with a Sagnac loop reflector[J]. J Opt, 2017, 46(4): 420−424. doi: 10.1007/s12596-017-0394-1

    CrossRef Google Scholar

    [99] Zheng J Q, Yang A, Wang T, et al. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator[J]. Photonics Res, 2018, 6(5): 396−402. doi: 10.1364/PRJ.6.000396

    CrossRef Google Scholar

    [100] Li S, Yin Y, Lewis E, et al. A twelve-wavelength Thulium-doped fibre laser based on a microfibre coil resonator incorporating black phosphorus[J]. Opt Commun, 2019, 437: 342−345. doi: 10.1016/j.optcom.2018.12.075

    CrossRef Google Scholar

    [101] Deng Y D, Zhou Y, Yin T C, et al. Stable multiwavelength Tm-doped fiber laser with a microfiber knot resonator[J]. Microw Opt Technol Lett, 2020, 62(1): 555−558.

    Google Scholar

    [102] Li C, Chen J H, Yan S C, et al. A fiber laser using graphene-integrated 3-D microfiber coil[J]. IEEE Photonics J, 2016, 8(1): 1500307. doi: 10.1109/JPHOT.2015.2513199

    CrossRef Google Scholar

    [103] Li S, Yi Y T, Yin Y, et al. A microfiber knot incorporating a tungsten disulfide saturable absorber based multi-wavelength mode-locked erbium-doped fiber laser[J]. J Lightwave Technol, 2018, 36(23): 5633−5639. doi: 10.1109/JLT.2018.2877583

    CrossRef Google Scholar

    [104] Liu M, Tang R, Luo A P, et al. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers[J]. Photonics Res, 2018, 6(10): C1−C7. doi: 10.1364/PRJ.6.0000C1

    CrossRef Google Scholar

    [105] Lee S, Song Y W. Graphene self-phase-lockers formed around a Cu wire hub for ring resonators incorporated into 57.8 gigahertz fiber pulsed lasers[J]. ACS Nano, 2020, 14(11): 15944−15952. doi: 10.1021/acsnano.0c07355

    CrossRef Google Scholar

    [106] Ding Z X, Chen Y, Xu F. Multifunctional all-fiber mode-locked laser based on graphene-integrated polarization-dependent microfiber resonator[J]. Opt Laser Technol, 2021, 143: 107381. doi: 10.1016/j.optlastec.2021.107381

    CrossRef Google Scholar

  • Microfibers tapered from conventional optical fibers with diameters ranging from hundreds of nanometers to several micrometers possess various advantages including large evanescent field, strong light confinement, high optical nonlinearity, flexible configurability, and low-loss connection to other fiberized system, which makes it an open platform for miniaturization and integration of all-fiber devices. Nowadays microfiber can be easily obtained through mature fabrication method like flame-brushing technique. On the other hand, as a fundamental opto-electronic component, optical resonators have got comprehensively researched and widely applied in the fields of optical communication, sensing, signal processing, and quantum photonics, including whispering-gallery-mode cavities like micro-ring, micro-cylinder, micro-toroid, and micro-sphere. These traditional optical resonators are fabricated through lithography which is relatively complicated. With the maturation of microfiber fabrication methods, optical resonators based on optical microfibers have been demonstrated and developed, such as microfiber loop resonators, microfiber knot resonators, and microfiber coil resonator. As an optical coupling device based on evanescent field coupling, the microfiber resonator features in low insertion loss, high Q-factor, high finesse, excellent mechanical stability, easy fabrication process, and compatibility with fiber systems, providing a broad platform for all-fiberized miniatured devices of probing and modulation. Through further integration with exterior functional materials and microfabrication techniques, a microfiber resonator can be utilized in diverse domains of sensor, filter, modulator, and fiber laser, as well as quantum photonics and nonlinear optics, realizing the ‘lab on fiber-ring’. In the field of sensing, the microfiber resonators get exploited as the refractometric sensor, concentration and humidity sensor, temperature and current sensor, mechanical pressure sensor, microfluidic sensor, magnetic field sensor, acceleration sensor, etc., where the devices exhibit high adaptability and excellent sensitivity. As to optical signal processing, the device can be used as the single wavelength or multi-wavelength filter, code-type conversion, and optical modulation. The intensity and phase of light can be tuned to a large scale within broad wavebands, and the modulation response time is also reduced to achieve high-speed modulation. Furthermore, the microfiber resonator can be used as an optical delay line or generator of second harmonic or third harmonic. When applied into fiber laser, the microfiber resonators help build the stable light source with narrow linewidth single frequency or multiwavelength laser with high uniformity. The devices integrated with metal or 2D materials also make the laser operate under conventional soliton mode-locking or dissipative four-wave-mixing mode-locking regime and output sub-picosecond pulsation, broadening the dynamics of ultrafast optics. In this article, we summarize the recent progress in the microfiber resonators research fields, covering fundamental principles and characteristics, fabrication methods, and applications of microfiber resonators.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(4)

Article Metrics

Article views(8319) PDF downloads(1858) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint